Answer :
Of course! Let's break down the problem step by step.
### Problem Statement
A car is moving at an average speed of [tex]\(\frac{200}{3} \text{ km/hr}\)[/tex]. We need to find out how much distance it will cover in [tex]\(\frac{15}{2} \text{ hours}\)[/tex].
### Step-by-Step Solution
1. Understand the given quantities:
- Speed of the car: [tex]\(\frac{200}{3} \text{ km/hr}\)[/tex]
- Time traveled: [tex]\(\frac{15}{2} \text{ hours}\)[/tex]
2. Use the formula for distance:
To find the distance covered, we can use the formula:
[tex]\[ \text{Distance} = \text{Speed} \times \text{Time} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ \text{Distance} = \left(\frac{200}{3} \text{ km/hr}\right) \times \left(\frac{15}{2} \text{ hours}\right) \][/tex]
4. Perform the multiplication:
To multiply these fractions, you multiply the numerators together and the denominators together:
[tex]\[ \text{Distance} = \frac{200 \times 15}{3 \times 2} \][/tex]
5. Simplify the fraction:
[tex]\[ 200 \times 15 = 3000 \][/tex]
[tex]\[ 3 \times 2 = 6 \][/tex]
So,
[tex]\[ \text{Distance} = \frac{3000}{6} \][/tex]
6. Divide the numerator by the denominator:
[tex]\[ \frac{3000}{6} = 500 \][/tex]
Thus, the car will cover a distance of [tex]\(500 \text{ kilometers}\)[/tex] in [tex]\(\frac{15}{2}\)[/tex] hours.
### Problem Statement
A car is moving at an average speed of [tex]\(\frac{200}{3} \text{ km/hr}\)[/tex]. We need to find out how much distance it will cover in [tex]\(\frac{15}{2} \text{ hours}\)[/tex].
### Step-by-Step Solution
1. Understand the given quantities:
- Speed of the car: [tex]\(\frac{200}{3} \text{ km/hr}\)[/tex]
- Time traveled: [tex]\(\frac{15}{2} \text{ hours}\)[/tex]
2. Use the formula for distance:
To find the distance covered, we can use the formula:
[tex]\[ \text{Distance} = \text{Speed} \times \text{Time} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ \text{Distance} = \left(\frac{200}{3} \text{ km/hr}\right) \times \left(\frac{15}{2} \text{ hours}\right) \][/tex]
4. Perform the multiplication:
To multiply these fractions, you multiply the numerators together and the denominators together:
[tex]\[ \text{Distance} = \frac{200 \times 15}{3 \times 2} \][/tex]
5. Simplify the fraction:
[tex]\[ 200 \times 15 = 3000 \][/tex]
[tex]\[ 3 \times 2 = 6 \][/tex]
So,
[tex]\[ \text{Distance} = \frac{3000}{6} \][/tex]
6. Divide the numerator by the denominator:
[tex]\[ \frac{3000}{6} = 500 \][/tex]
Thus, the car will cover a distance of [tex]\(500 \text{ kilometers}\)[/tex] in [tex]\(\frac{15}{2}\)[/tex] hours.