Write the recurring decimal [tex]$0.\dot{8}$[/tex] as a fraction.

[tex]\[
\begin{aligned}
&\text{Let } x = 0.\dot{8} \\
&\text{Then, } 10x = 8.\dot{8} \\
&\text{Subtracting these equations:} \\
&10x - x = 8.\dot{8} - 0.\dot{8} \\
&9x = 8 \\
&x = \frac{8}{9}
\end{aligned}
\][/tex]



Answer :

To write the recurring decimal [tex]\( 0.\overline{8} \)[/tex] as a fraction, follow these steps:

1. Define the recurring decimal:
Let [tex]\( x = 0.\overline{8} \)[/tex]. This means [tex]\( x = 0.8888\ldots \)[/tex], where the digit '8' repeats indefinitely.

2. Multiply both sides by 10:
Multiply the equation [tex]\( x = 0.\overline{8} \)[/tex] by 10:
[tex]\[ 10x = 8.8888\ldots \][/tex]

3. Set up an equation to eliminate the repeating part:
We now have two equations:
[tex]\[ x = 0.8888\ldots \quad \text{(Equation 1)} \][/tex]
[tex]\[ 10x = 8.8888\ldots \quad \text{(Equation 2)} \][/tex]

4. Subtract Equation 1 from Equation 2:
By subtracting Equation 1 from Equation 2, we eliminate the repeating part:
[tex]\[ 10x - x = 8.8888\ldots - 0.8888\ldots \][/tex]
Simplifying, we get:
[tex]\[ 9x = 8 \][/tex]

5. Solve for [tex]\( x \)[/tex]:
Divide both sides of the equation by 9:
[tex]\[ x = \frac{8}{9} \][/tex]

Therefore, the recurring decimal [tex]\( 0.\overline{8} \)[/tex] as a fraction is [tex]\( \frac{8}{9} \)[/tex].