Answer :
Certainly, let's break down the given mathematical expressions step-by-step:
1. First expression:
[tex]\[ 1 + 2 \times 3 \][/tex]
According to the order of operations (PEMDAS/BODMAS):
[tex]\[ 2 \times 3 = 6 \][/tex]
Thus:
[tex]\[ 1 + 6 = 7 \][/tex]
2. The second expression:
[tex]\[ 2 \][/tex]
This is a straightforward constant value, so it remains:
[tex]\[ 2 \][/tex]
3. Third expression:
[tex]\[ x^2 + 3 + 3 \][/tex]
As we don't have a specific value for [tex]\( x \)[/tex], let's assume the expression needs evaluation independently of [tex]\( x \)[/tex]. Simplify the constants:
[tex]\[ 3 + 3 = 6 \][/tex]
Hence:
[tex]\[ x^2 + 6 \][/tex]
Now, let's assume [tex]\( x = 2 \)[/tex] for simplicity:
[tex]\[ 2^2 + 6 = 4 + 6 = 10 \][/tex]
4. Fourth expression:
[tex]\[ -4 \times 4 \][/tex]
Multiply:
[tex]\[ -4 \times 4 = -16 \][/tex]
5. Fifth expression:
[tex]\[ 3 \][/tex]
Another constant that remains unchanged:
[tex]\[ 3 \][/tex]
6. Sixth expression:
[tex]\[ 4 \][/tex]
This is again a constant value, so it remains:
[tex]\[ 4 \][/tex]
So, putting all these results together:
- First expression: [tex]\( 7 \)[/tex]
- Second expression: [tex]\( 2 \)[/tex]
- Third expression: [tex]\( 10 \)[/tex]
- Fourth expression: [tex]\( -16 \)[/tex]
- Fifth expression: [tex]\( 3 \)[/tex]
- Sixth expression: [tex]\( 4 \)[/tex]
The sequence of results is:
[tex]\[ (7, 2, 10, -16, 3, 4) \][/tex]
That’s the detailed step-by-step solution for each expression given in the original question.
1. First expression:
[tex]\[ 1 + 2 \times 3 \][/tex]
According to the order of operations (PEMDAS/BODMAS):
[tex]\[ 2 \times 3 = 6 \][/tex]
Thus:
[tex]\[ 1 + 6 = 7 \][/tex]
2. The second expression:
[tex]\[ 2 \][/tex]
This is a straightforward constant value, so it remains:
[tex]\[ 2 \][/tex]
3. Third expression:
[tex]\[ x^2 + 3 + 3 \][/tex]
As we don't have a specific value for [tex]\( x \)[/tex], let's assume the expression needs evaluation independently of [tex]\( x \)[/tex]. Simplify the constants:
[tex]\[ 3 + 3 = 6 \][/tex]
Hence:
[tex]\[ x^2 + 6 \][/tex]
Now, let's assume [tex]\( x = 2 \)[/tex] for simplicity:
[tex]\[ 2^2 + 6 = 4 + 6 = 10 \][/tex]
4. Fourth expression:
[tex]\[ -4 \times 4 \][/tex]
Multiply:
[tex]\[ -4 \times 4 = -16 \][/tex]
5. Fifth expression:
[tex]\[ 3 \][/tex]
Another constant that remains unchanged:
[tex]\[ 3 \][/tex]
6. Sixth expression:
[tex]\[ 4 \][/tex]
This is again a constant value, so it remains:
[tex]\[ 4 \][/tex]
So, putting all these results together:
- First expression: [tex]\( 7 \)[/tex]
- Second expression: [tex]\( 2 \)[/tex]
- Third expression: [tex]\( 10 \)[/tex]
- Fourth expression: [tex]\( -16 \)[/tex]
- Fifth expression: [tex]\( 3 \)[/tex]
- Sixth expression: [tex]\( 4 \)[/tex]
The sequence of results is:
[tex]\[ (7, 2, 10, -16, 3, 4) \][/tex]
That’s the detailed step-by-step solution for each expression given in the original question.