Evaluate each expression.

1. [tex]3(6+7)[/tex]
2. [tex]72 \div 9 + 7[/tex]
3. [tex]9 + 8 - 7[/tex]
4. [tex]5(10-1)[/tex]
5. [tex]20 \div (4-(10-8))[/tex]



Answer :

Sure, let's evaluate each expression step by step:

### Expression 1: [tex]\( 3(6 + 7) \)[/tex]
1. First, calculate inside the parentheses: [tex]\( 6 + 7 = 13 \)[/tex].
2. Multiply the result by 3: [tex]\( 3 \times 13 = 39 \)[/tex].

So, [tex]\( 3(6 + 7) = 39 \)[/tex].

### Expression 3: [tex]\( 72 \div 9 + 7 \)[/tex]
1. Perform the division first: [tex]\( 72 \div 9 = 8 \)[/tex].
2. Add 7 to the result: [tex]\( 8 + 7 = 15 \)[/tex].

So, [tex]\( 72 \div 9 + 7 = 15 \)[/tex].

### Expression 5: [tex]\( 9 + 8 - 7 \)[/tex]
1. First, add 9 and 8: [tex]\( 9 + 8 = 17 \)[/tex].
2. Then subtract 7 from the result: [tex]\( 17 - 7 = 10 \)[/tex].

So, [tex]\( 9 + 8 - 7 = 10 \)[/tex].

### Expression 7: [tex]\( 5(10 - 1) \)[/tex]
1. First, calculate inside the parentheses: [tex]\( 10 - 1 = 9 \)[/tex].
2. Multiply the result by 5: [tex]\( 5 \times 9 = 45 \)[/tex].

So, [tex]\( 5(10 - 1) = 45 \)[/tex].

### Expression 9: [tex]\( 20 \div (4 - (10 - 8)) \)[/tex]
1. First, evaluate the innermost parentheses: [tex]\( 10 - 8 = 2 \)[/tex].
2. Subtract the result from 4: [tex]\( 4 - 2 = 2 \)[/tex].
3. Now, perform the division: [tex]\( 20 \div 2 = 10 \)[/tex].

So, [tex]\( 20 \div (4 - (10 - 8)) = 10 \)[/tex].

These are the evaluations:
1. [tex]\( 3(6 + 7) = 39 \)[/tex]
3. [tex]\( 72 \div 9 + 7 = 15 \)[/tex]
5. [tex]\( 9 + 8 - 7 = 10 \)[/tex]
7. [tex]\( 5(10 - 1) = 45 \)[/tex]
9. [tex]\( 20 \div (4 - (10 - 8)) = 10 \)[/tex]