Answer :
Sure, let's tackle each equation step by step.
### Question 6:
[tex]\[ \sqrt{2} + 9 + 2 + 2 \][/tex]
First, evaluate the square root of 2.
[tex]\[ \sqrt{2} \approx 1.4142135623730951 \][/tex]
Then, add all the numbers together.
[tex]\[ \sqrt{2} + 9 + 2 + 2 \approx 1.4142135623730951 + 9 + 2 + 2 = 14.414213562373096 \][/tex]
### Question 7:
[tex]\[ d + d + \gamma = 4 \][/tex]
Assume [tex]\(\gamma = 1\)[/tex].
[tex]\[ d + d + 1 = 4 \][/tex]
Combine like terms.
[tex]\[ 2d + 1 = 4 \][/tex]
Subtract 1 from both sides.
[tex]\[ 2d = 3 \][/tex]
Divide by 2.
[tex]\[ d = \frac{3}{2} = 1.5 \][/tex]
### Question 8:
[tex]\[ 0 + \sqrt{0} + d = 6 \][/tex]
Evaluate the square root of 0.
[tex]\[ \sqrt{0} = 0 \][/tex]
Then plug in the value of [tex]\( d \)[/tex] from question 7.
[tex]\[ 0 + 0 + d = 6 \][/tex]
Simplify the equation.
[tex]\[ d = 6 \][/tex]
### Question a:
[tex]\[ \alpha + \rho + d \][/tex]
Using the value of [tex]\( d \)[/tex] from question 8.
[tex]\[ d = 6 \][/tex]
The expression becomes:
[tex]\[ \alpha + \rho + 6 \][/tex]
### Question 10:
[tex]\[ 0 + 2 + d + d \][/tex]
Using the value of [tex]\( d \)[/tex] from question 8.
[tex]\[ d = 6 \][/tex]
Substitute [tex]\( d \)[/tex] into the equation.
[tex]\[ 0 + 2 + 6 + 6 = 14 \][/tex]
Add all the terms together.
[tex]\[ 0 + 2 + 6 + 6 = 14 \][/tex]
### Summary of Results:
[tex]\[ 6. \quad \sqrt{2} + 9 + 2 + 2 = 14.414213562373096 \][/tex]
[tex]\[ 7. \quad d + d + \gamma = 4 \implies d = 1.5 \quad \text{(assuming } \gamma = 1\text{)} \][/tex]
[tex]\[ 8. \quad 0 + \sqrt{0} + d = 6 \implies d = 6 \][/tex]
[tex]\[ \text{a.} \quad \alpha + \rho + d = \alpha + \rho + 6 \][/tex]
[tex]\[ 10. \quad 0 + 2 + d + d = 14 \quad (d = 6) \][/tex]
### Question 6:
[tex]\[ \sqrt{2} + 9 + 2 + 2 \][/tex]
First, evaluate the square root of 2.
[tex]\[ \sqrt{2} \approx 1.4142135623730951 \][/tex]
Then, add all the numbers together.
[tex]\[ \sqrt{2} + 9 + 2 + 2 \approx 1.4142135623730951 + 9 + 2 + 2 = 14.414213562373096 \][/tex]
### Question 7:
[tex]\[ d + d + \gamma = 4 \][/tex]
Assume [tex]\(\gamma = 1\)[/tex].
[tex]\[ d + d + 1 = 4 \][/tex]
Combine like terms.
[tex]\[ 2d + 1 = 4 \][/tex]
Subtract 1 from both sides.
[tex]\[ 2d = 3 \][/tex]
Divide by 2.
[tex]\[ d = \frac{3}{2} = 1.5 \][/tex]
### Question 8:
[tex]\[ 0 + \sqrt{0} + d = 6 \][/tex]
Evaluate the square root of 0.
[tex]\[ \sqrt{0} = 0 \][/tex]
Then plug in the value of [tex]\( d \)[/tex] from question 7.
[tex]\[ 0 + 0 + d = 6 \][/tex]
Simplify the equation.
[tex]\[ d = 6 \][/tex]
### Question a:
[tex]\[ \alpha + \rho + d \][/tex]
Using the value of [tex]\( d \)[/tex] from question 8.
[tex]\[ d = 6 \][/tex]
The expression becomes:
[tex]\[ \alpha + \rho + 6 \][/tex]
### Question 10:
[tex]\[ 0 + 2 + d + d \][/tex]
Using the value of [tex]\( d \)[/tex] from question 8.
[tex]\[ d = 6 \][/tex]
Substitute [tex]\( d \)[/tex] into the equation.
[tex]\[ 0 + 2 + 6 + 6 = 14 \][/tex]
Add all the terms together.
[tex]\[ 0 + 2 + 6 + 6 = 14 \][/tex]
### Summary of Results:
[tex]\[ 6. \quad \sqrt{2} + 9 + 2 + 2 = 14.414213562373096 \][/tex]
[tex]\[ 7. \quad d + d + \gamma = 4 \implies d = 1.5 \quad \text{(assuming } \gamma = 1\text{)} \][/tex]
[tex]\[ 8. \quad 0 + \sqrt{0} + d = 6 \implies d = 6 \][/tex]
[tex]\[ \text{a.} \quad \alpha + \rho + d = \alpha + \rho + 6 \][/tex]
[tex]\[ 10. \quad 0 + 2 + d + d = 14 \quad (d = 6) \][/tex]