Answered

The graph of a linear equation is [tex]a x + b y = 12[/tex], where [tex]a[/tex] and [tex]b[/tex] are constants. If the line contains the points [tex]\((0, 3)\)[/tex] and [tex]\((2, -4)\)[/tex], what is the value of [tex]b[/tex]?

A. 4
B. 3
C. 2
D. -2



Answer :

To determine the value of [tex]\( b \)[/tex] in the linear equation [tex]\( a x + b y = 12 \)[/tex] given that the line passes through the points [tex]\((0,3)\)[/tex] and [tex]\((2,-4)\)[/tex], let's proceed step-by-step:

1. Substitute the points into the equation:

For the point [tex]\((0, 3)\)[/tex]:
[tex]\[ a \cdot 0 + b \cdot 3 = 12 \][/tex]
Simplifying this equation:
[tex]\[ 3b = 12 \][/tex]
Solving for [tex]\( b \)[/tex]:
[tex]\[ b = \frac{12}{3} = 4 \][/tex]

2. Verify the value using the second point [tex]\((2, -4)\)[/tex]:

Substitute [tex]\( b = 4 \)[/tex] into the equation for the second point [tex]\((2, -4)\)[/tex]:
[tex]\[ a \cdot 2 + 4 \cdot (-4) = 12 \][/tex]
Simplifying this equation:
[tex]\[ 2a - 16 = 12 \][/tex]
Rearrange terms to solve for [tex]\( a \)[/tex]:
[tex]\[ 2a = 12 + 16 \][/tex]
[tex]\[ 2a = 28 \][/tex]
[tex]\[ a = \frac{28}{2} = 14 \][/tex]

Now, we have confirmed that the value of [tex]\( a \)[/tex] is consistent with [tex]\( b = 4 \)[/tex].

Thus, the value of [tex]\( b \)[/tex] is
[tex]\[ \boxed{4} \][/tex]