Problem #2: Evaluate each expression using the values given.

a) [tex]\( z + y + x \)[/tex]; use [tex]\( x = 4, y = -1 \)[/tex], and [tex]\( z = 1 \)[/tex]

b) [tex]\( pm + 6 \)[/tex]; use [tex]\( m = -2 \)[/tex], and [tex]\( p = -3 \)[/tex]



Answer :

Let's solve each part of Problem #2 step-by-step.

### Part a) Evaluate [tex]\( z + y + x \)[/tex] with given values
Given values:
- [tex]\( x = 4 \)[/tex]
- [tex]\( y = -1 \)[/tex]
- [tex]\( z = 1 \)[/tex]

We need to find the value of [tex]\( z + y + x \)[/tex].

1. Start with the given values:
[tex]\[ z = 1, \, y = -1, \, x = 4 \][/tex]

2. Substitute these values into the expression [tex]\( z + y + x \)[/tex]:
[tex]\[ z + y + x = 1 + (-1) + 4 \][/tex]

3. Evaluate the expression step-by-step:
[tex]\[ 1 + (-1) = 0 \][/tex]
So,
[tex]\[ 0 + 4 = 4 \][/tex]

Therefore, the value of [tex]\( z + y + x \)[/tex] is [tex]\( 4 \)[/tex].

### Part b) Evaluate [tex]\( pm + 6 \)[/tex] with given values
Given values:
- [tex]\( m = -2 \)[/tex]
- [tex]\( p = -3 \)[/tex]

We need to find the value of [tex]\( pm + 6 \)[/tex].

1. Start with the given values:
[tex]\[ m = -2, \, p = -3 \][/tex]

2. Substitute these values into the expression [tex]\( pm + 6 \)[/tex]:
[tex]\[ pm + 6 = (-3) \times (-2) + 6 \][/tex]

3. Evaluate the expression step-by-step:
[tex]\[ (-3) \times (-2) = 6 \][/tex]
So,
[tex]\[ 6 + 6 = 12 \][/tex]

Therefore, the value of [tex]\( pm + 6 \)[/tex] is [tex]\( 12 \)[/tex].

### Summary
- The value of [tex]\( z + y + x \)[/tex] is [tex]\( 4 \)[/tex].
- The value of [tex]\( pm + 6 \)[/tex] is [tex]\( 12 \)[/tex].