Select the correct answer.

Which expression is equivalent to the given expression?

[tex]\[
\left(14 x^3 y^{-4}\right)\left(4 x^{-5} y^4\right)
\][/tex]

A. [tex]\(\frac{56}{x^2}\)[/tex]

B. [tex]\(56 x^2 y\)[/tex]

C. [tex]\(\frac{56 y}{x^2}\)[/tex]

D. [tex]\(56 x^2\)[/tex]



Answer :

Sure, let’s simplify the given expression step-by-step.

Given:
[tex]\[ (14 x^3 y^{-4})(4 x^{-5} y^4) \][/tex]

1. Combine the coefficients:
[tex]\[ 14 \cdot 4 = 56 \][/tex]

2. Combine the [tex]\(x\)[/tex] terms using the properties of exponents:
[tex]\[ x^3 \cdot x^{-5} = x^{3 + (-5)} = x^{-2} \][/tex]

3. Combine the [tex]\(y\)[/tex] terms using the properties of exponents:
[tex]\[ y^{-4} \cdot y^4 = y^{-4 + 4} = y^0 \][/tex]
Recall that any number raised to the power of 0 is 1:
[tex]\[ y^0 = 1 \][/tex]

Putting everything together, we get:
[tex]\[ 56 \cdot x^{-2} \cdot 1 = 56 x^{-2} \][/tex]

Recall that [tex]\( x^{-2} \)[/tex] can be written as [tex]\( \frac{1}{x^2} \)[/tex]:
[tex]\[ 56 x^{-2} = 56 \cdot \frac{1}{x^2} = \frac{56}{x^2} \][/tex]

Therefore, the equivalent expression is:
[tex]\[ \boxed{\frac{56}{x^2}} \][/tex]

The correct answer is:
A. [tex]\(\frac{56}{x^2}\)[/tex]