Select the correct answer.

Solve the equation for [tex]$x$[/tex] in terms of [tex]$c$[/tex].

[tex]\frac{2}{3}\left(c x+\frac{1}{2}\right)-\frac{1}{4}=\frac{5}{2}[/tex]

A. [tex]x=\frac{27}{8 c}[/tex]
B. [tex]x=\frac{9}{4 c}[/tex]
C. [tex]x=\frac{29}{18 c}[/tex]
D. [tex]x=\frac{29}{8 c}[/tex]



Answer :

To solve the equation for [tex]\( x \)[/tex] in terms of [tex]\( c \)[/tex]:

[tex]\[ \frac{2}{3}\left(c x + \frac{1}{2}\right) - \frac{1}{4} = \frac{5}{2} \][/tex]

we need to follow these steps:

1. Distribute and clear fractions: Start by distributing [tex]\(\frac{2}{3}\)[/tex] to the terms inside the parentheses and then simplify the equation:

[tex]\[ \frac{2}{3} \cdot c x + \frac{2}{3} \cdot \frac{1}{2} - \frac{1}{4} = \frac{5}{2} \][/tex]

which simplifies to:

[tex]\[ \frac{2}{3} c x + \frac{2}{6} - \frac{1}{4} = \frac{5}{2} \][/tex]

Since [tex]\(\frac{2}{6} = \frac{1}{3}\)[/tex]:

[tex]\[ \frac{2}{3} c x + \frac{1}{3} - \frac{1}{4} = \frac{5}{2} \][/tex]

2. Combine constants on one side of the equation: To do that, we should combine [tex]\(\frac{1}{3}\)[/tex] and [tex]\(\frac{1}{4}\)[/tex]:

[tex]\[ \frac{2}{3} c x + \left(\frac{1}{3} - \frac{1}{4}\right) = \frac{5}{2} \][/tex]

To subtract [tex]\(\frac{1}{4}\)[/tex] from [tex]\(\frac{1}{3}\)[/tex], we need a common denominator. The least common multiple of 3 and 4 is 12:

[tex]\[ \frac{1}{3} = \frac{4}{12}, \quad \frac{1}{4} = \frac{3}{12} \][/tex]

So,

[tex]\[ \frac{4}{12} - \frac{3}{12} = \frac{1}{12} \][/tex]

Thus,

[tex]\[ \frac{2}{3} c x + \frac{1}{12} = \frac{5}{2} \][/tex]

3. Isolate the term involving [tex]\( x \)[/tex]: Subtract [tex]\(\frac{1}{12}\)[/tex] from both sides to isolate the [tex]\(\frac{2}{3} c x\)[/tex] term:

[tex]\[ \frac{2}{3} c x = \frac{5}{2} - \frac{1}{12} \][/tex]

Convert [tex]\(\frac{5}{2}\)[/tex] to have a denominator of 12:

[tex]\[ \frac{5}{2} = \frac{30}{12} \][/tex]

[tex]\[ \frac{30}{12} - \frac{1}{12} = \frac{29}{12} \][/tex]

Thus,

[tex]\[ \frac{2}{3} c x = \frac{29}{12} \][/tex]

4. Solve for [tex]\( x \)[/tex]: Multiply both sides of the equation by [tex]\(\frac{3}{2 c}\)[/tex] to solve for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{29}{12} \cdot \frac{3}{2 c} \][/tex]

This simplifies to:

[tex]\[ x = \frac{29 \cdot 3}{12 \cdot 2 c} = \frac{87}{24 c} \][/tex]

[tex]\[ x = \frac{29}{8 c} \][/tex]

Therefore, the solution is:

[tex]\[ \boxed{x = \frac{29}{8 c}} \][/tex]