Select the correct answer.

What is the simplified form of this expression?
[tex]\[
\left(8x^2 - 3x + \frac{1}{3}\right) - \left(2x^2 - 8x + \frac{3}{5}\right)
\][/tex]

A. [tex]\(6x^2 + 11x + \frac{14}{15}\)[/tex]
B. [tex]\(6x^2 + 5x - \frac{4}{15}\)[/tex]
C. [tex]\(6x^2 + 5x + \frac{14}{15}\)[/tex]
D. [tex]\(6x^2 - 11x + \frac{4}{15}\)[/tex]



Answer :

To simplify the given expression:
[tex]$ \left(8 x^2-3 x+\frac{1}{3}\right)-\left(2 x^2-8 x+\frac{3}{5}\right) $[/tex]

we can start by distributing the subtraction through the second expression:
[tex]$ 8 x^2 - 3 x + \frac{1}{3} - (2 x^2 - 8 x + \frac{3}{5}) $[/tex]

This simplifies to:
[tex]$ 8 x^2 - 3 x + \frac{1}{3} - 2 x^2 + 8 x - \frac{3}{5} $[/tex]

Next, we combine the like terms for [tex]\(x^2\)[/tex], [tex]\(x\)[/tex], and the constant terms separately.

#### Step 1: Combine [tex]\(x^2\)[/tex] terms
[tex]$ 8 x^2 - 2 x^2 = 6 x^2 $[/tex]

#### Step 2: Combine [tex]\(x\)[/tex] terms
[tex]$ -3 x + 8 x = 5 x $[/tex]

#### Step 3: Combine the constant terms
[tex]$ \frac{1}{3} - \frac{3}{5} $[/tex]

To combine these, we need a common denominator, which is 15:
[tex]$ \frac{1}{3} = \frac{5}{15} $[/tex]
[tex]$ \frac{3}{5} = \frac{9}{15} $[/tex]

Thus,
[tex]$ \frac{5}{15} - \frac{9}{15} = -\frac{4}{15} $[/tex]

Putting it all together, the simplified expression is:
[tex]$ 6 x^2 + 5 x - \frac{4}{15} $[/tex]

Therefore, the correct answer is:
[tex]$ 6 x^2 + 5 x - \frac{4}{15} $[/tex]

So, the correct choice is:
[tex]$ 6 x^2 + 5 x - \frac{4}{15} $[/tex]