2. Let [tex]$S$[/tex] be the integers and [tex]$n \ \textgreater \ 1$[/tex] a fixed integer. We define [tex]$a \sim b$[/tex] for [tex]$a$[/tex], [tex]$b \in S$[/tex] if [tex]$n \mid (a - b)$[/tex]. Verify that this is an equivalence relation.

- Reflexive: For any [tex]$a \in S$[/tex], [tex]$a - a = 0$[/tex] and [tex]$n \mid 0$[/tex], so [tex]$a \sim a$[/tex].
- Symmetric: If [tex]$a \sim b$[/tex], then [tex]$n \mid (a - b)$[/tex] implies [tex]$n \mid (b - a)$[/tex], so [tex]$b \sim a$[/tex].
- Transitive: If [tex]$a \sim b$[/tex] and [tex]$b \sim c$[/tex], then [tex]$n \mid (a - b)$[/tex] and [tex]$n \mid (b - c)$[/tex] imply [tex]$n \mid [(a - b) + (b - c)] = n \mid (a - c)$[/tex], so [tex]$a \sim c$[/tex].



Answer :

To show that the relation [tex]\( a \sim b \)[/tex] defined by [tex]\( n \mid (a - b) \)[/tex] is an equivalence relation on the set of integers [tex]\( \mathbb{Z} \)[/tex], we need to verify that this relation satisfies the three properties of equivalence relations: reflexivity, symmetry, and transitivity.

### Reflexivity
An equivalence relation must be reflexive, meaning every element must be related to itself. For our specific relation [tex]\( a \sim b \)[/tex], we need to show [tex]\( a \sim a \)[/tex] for any integer [tex]\( a \)[/tex].

- [tex]\( a \sim a \)[/tex] if and only if [tex]\( n \mid (a - a) \)[/tex].
- Since [tex]\( a - a = 0 \)[/tex] and [tex]\( n \)[/tex] divides 0 (for any [tex]\( n \)[/tex]) by definition, we have [tex]\( n \mid 0 \)[/tex].

Thus, [tex]\( a \sim a \)[/tex] for all integers [tex]\( a \)[/tex], proving reflexivity.

### Symmetry
An equivalence relation must be symmetric, meaning if [tex]\( a \sim b \)[/tex], then [tex]\( b \sim a \)[/tex]. For our specific relation [tex]\( a \sim b \)[/tex], we need to show that if [tex]\( n \mid (a - b) \)[/tex], then [tex]\( n \mid (b - a) \)[/tex].

- Suppose [tex]\( a \sim b \)[/tex], which means [tex]\( n \mid (a - b) \)[/tex].
- By definition of divisibility, this implies there exists some integer [tex]\( k \)[/tex] such that [tex]\( a - b = kn \)[/tex].
- Consider the relation [tex]\( b - a \)[/tex]. We have [tex]\( b - a = - (a - b) \)[/tex].

Since [tex]\( a - b = kn \)[/tex], it follows that [tex]\( b - a = -kn \)[/tex]. Therefore, [tex]\( n \)[/tex] divides [tex]\( -kn \)[/tex], and since [tex]\( n \mid (kn) \)[/tex], it must also hold that [tex]\( n \mid (-kn) \)[/tex].

This establishes that [tex]\( b \sim a \)[/tex] when [tex]\( a \sim b \)[/tex], proving symmetry.

### Transitivity
An equivalence relation must be transitive, meaning if [tex]\( a \sim b \)[/tex] and [tex]\( b \sim c \)[/tex], then [tex]\( a \sim c \)[/tex]. For our specific relation [tex]\( a \sim b \)[/tex], we need to show that if [tex]\( n \mid (a - b) \)[/tex] and [tex]\( n \mid (b - c) \)[/tex], then [tex]\( n \mid (a - c) \)[/tex].

- Suppose [tex]\( a \sim b \)[/tex], meaning [tex]\( n \mid (a - b) \)[/tex]. Therefore, there exists some integer [tex]\( k_1 \)[/tex] such that [tex]\( a - b = k_1 n \)[/tex].
- Suppose [tex]\( b \sim c \)[/tex], meaning [tex]\( n \mid (b - c) \)[/tex]. Therefore, there exists some integer [tex]\( k_2 \)[/tex] such that [tex]\( b - c = k_2 n \)[/tex].

We need to show that [tex]\( n \mid (a - c) \)[/tex]:

- Consider [tex]\( a - c \)[/tex].
- By adding the two relations given, [tex]\( (a - b) + (b - c) = k_1 n + k_2 n \)[/tex].

This simplifies to:

[tex]\[ a - c = k_1 n + k_2 n = (k_1 + k_2) n \][/tex]

Since [tex]\( k_1 \)[/tex] and [tex]\( k_2 \)[/tex] are integers, [tex]\( (k_1 + k_2) \)[/tex] is also an integer. Therefore, [tex]\( a - c \)[/tex] is some integer multiple of [tex]\( n \)[/tex], which means [tex]\( n \mid (a - c) \)[/tex].

Hence, if [tex]\( a \sim b \)[/tex] and [tex]\( b \sim c \)[/tex], then [tex]\( a \sim c \)[/tex], proving transitivity.

### Conclusion
Since the relation [tex]\( a \sim b \)[/tex] defined by [tex]\( n \mid (a - b) \)[/tex] satisfies reflexivity, symmetry, and transitivity, it is an equivalence relation on the set of integers [tex]\( \mathbb{Z} \)[/tex].