A number cube is rolled three times. An outcome is represented by a string of the sort OEE (meaning an odd number on the first roll, an even number on the second roll, and an even number on the third roll). The 8 outcomes are listed in the table below. Note that each outcome has the same probability.

For each of the three events in the table, check the outcome(s) that are contained in the event. Then, in the last column, enter the probability of the event.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
& \multicolumn{8}{|c|}{Outcomes} & \multirow{2}{*}{Probability} \\
\cline{2-9}
& 000 & OOE & EEO & OEO & OEE & EEE & EOO & EOE & \\
\hline
\begin{tabular}{l}
Event A: An odd number on each of \\
the first two rolls
\end{tabular}
& [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] \\
\hline
Event B: Exactly one odd number
& [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] \\
\hline
\begin{tabular}{l}
Event C: Alternating even number and \\
odd number (with either coming first)
\end{tabular}
& [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] & [tex]$\square$[/tex] \\
\hline
\end{tabular}



Answer :

Let's go through each event and identify the outcomes that meet the criteria. Then, we will calculate the probability of each event.

Given outcomes:
[tex]\[ \begin{array}{c} 1. \; OOE \\ 2. \; EEO \\ 3. \; OEO \\ 4. \; OEE \\ 5. \; EEE \\ 6. \; EOE \\ 7. \; EOO \\ 8. \; EOO \\ \end{array} \][/tex]

Event A: An odd number on each of the first two rolls.

To meet this criteria, the first and second rolls must be odd. Let's check each outcome:

- OOE: First and second are odd (belongs to Event A)
- EEO: First is even
- OEO: Second is even
- OEE: Second is even
- EEE: First is even
- EOE: First is even
- EOO: First is even
- EOO: First is even

So, only OOE meets the criteria.
[tex]\[ \text{Number of favorable outcomes} = 1 \][/tex]
[tex]\[ \text{Total outcomes} = 8 \][/tex]
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes}}{\text{Total outcomes}} = \frac{1}{8} = 0.125 \][/tex]

Event B: Exactly one odd number.

To meet this criteria, the outcome must have exactly one 'O':

- OOE: Two odds
- EEO: One odd (belongs to Event B)
- OEO: Two odds
- OEE: One odd (belongs to Event B)
- EEE: No odds
- EOE: One odd (belongs to Event B)
- EOO: Two odds
- EOO: Two odds

So, EEO, OEE, and EOE meet the criteria.
[tex]\[ \text{Number of favorable outcomes} = 3 \][/tex]
[tex]\[ \text{Total outcomes} = 8 \][/tex]
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes}}{\text{Total outcomes}} = \frac{3}{8} = 0.375 \][/tex]

Event C: Alternating even number and odd number (with either coming first).

For this criterion, the numbers must alternate and meet one of the following patterns: OEO or EOE:

- OOE: Not alternating
- EEO: Not alternating
- OEO: Alternating (belongs to Event C)
- OEE: Not alternating
- EEE: Not alternating
- EOE: Alternating (belongs to Event C)
- EOO: Not alternating
- EOO: Not alternating

So, OEO and EOE meet the criteria.
[tex]\[ \text{Number of favorable outcomes} = 2 \][/tex]
[tex]\[ \text{Total outcomes} = 8 \][/tex]
[tex]\[ \text{Probability} = \frac{\text{Number of favorable outcomes}}{\text{Total outcomes}} = \frac{2}{8} = 0.25 \][/tex]

Here is the completed table:

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline & OOE & EEO & OEO & OEE & EEE & EOE & EOO & EOO & \text{Probability}\\ \hline \text{Event A: An odd number on each of} & \checkmark & & & & & & & & 0.125 \\ \hline \text{Event B: Exactly one odd number} & & \checkmark & & \checkmark & & \checkmark & & & 0.375 \\ \hline \text{Event C: Alternating even number and} & & & \checkmark & & & \checkmark & & & 0.25 \\ \hline \end{array} \][/tex]

This table correctly identifies the favorable outcomes for each event and their respective probabilities.