Answered

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
0 & -1 \\
\hline
3 & -2 \\
\hline
12 & -5 \\
\hline
\end{tabular}

Some values of [tex]$x$[/tex] and their corresponding values of [tex]$f(x)$[/tex] for the linear function [tex]$f$[/tex] are shown in the table. What is the value of [tex]$f(-6)$[/tex]?

A. 1
B. 0
C. -1
D. -3



Answer :

To find the value of [tex]\( f(-6) \)[/tex] for the linear function [tex]\( f(x) \)[/tex], given the values in the table, we need to follow these steps:

1. Identify the points given in the table:
[tex]\[ (0, -1), (3, -2), (12, -5) \][/tex]

2. Determine the slope [tex]\( m \)[/tex] of the linear function:
The slope [tex]\( m \)[/tex] can be determined by using any two points from the table. Let's use the points [tex]\((0, -1)\)[/tex] and [tex]\((3, -2)\)[/tex].

The formula for the slope [tex]\( m \)[/tex] is:
[tex]\[ m = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \][/tex]
Plugging in the values from the points [tex]\((0, -1)\)[/tex] and [tex]\((3, -2)\)[/tex]:
[tex]\[ m = \frac{-2 - (-1)}{3 - 0} = \frac{-2 + 1}{3} = \frac{-1}{3} = -\frac{1}{3} \][/tex]

3. Determine the y-intercept [tex]\( b \)[/tex]:
Since the point [tex]\((0, -1)\)[/tex] is given, it directly helps us find the y-intercept [tex]\( b \)[/tex]:
[tex]\[ f(0) = b = -1 \][/tex]

4. Formulate the linear function [tex]\( f(x) \)[/tex]:
With the slope [tex]\( m \)[/tex] and y-intercept [tex]\( b \)[/tex], the linear function [tex]\( f(x) \)[/tex] can be written as:
[tex]\[ f(x) = -\frac{1}{3}x - 1 \][/tex]

5. Calculate [tex]\( f(-6) \)[/tex]:
Substitute [tex]\( x = -6 \)[/tex] into the linear function:
[tex]\[ f(-6) = -\frac{1}{3}(-6) - 1 \][/tex]
Calculate the value:
[tex]\[ f(-6) = \frac{6}{3} - 1 = 2 - 1 = 1 \][/tex]

Therefore, the value of [tex]\( f(-6) \)[/tex] is [tex]\(\boxed{1}\)[/tex].