15. Data about the age of males and females in a small rural area are shown in the table.

\begin{tabular}{|l|c|c|}
\cline { 2 - 3 }
\multicolumn{1}{c|}{} & Under 35 & 35 and over \\
\hline
Male & 345 & 380 \\
\hline
Female & 362 & 472 \\
\hline
\end{tabular}

A person from this area is chosen at random. Let [tex]$M$[/tex] be the event that the person is male and let [tex]$Y$[/tex] be the event that the person is under 35.

i) Find [tex]$P(M)$[/tex].

ii) Find [tex]$P(M \text{ and } Y)$[/tex].

iii) Are [tex]$M$[/tex] and [tex]$Y$[/tex] independent events? Justify your answer.



Answer :

Let's analyze the given data and solve the problem step-by-step.

### Data Given:
[tex]\[ \begin{array}{|l|c|c|} \hline & \text{Under 35} & \text{35 and over} \\ \hline \text{Male} & 345 & 380 \\ \hline \text{Female} & 362 & 472 \\ \hline \end{array} \][/tex]

From this data, we can determine the necessary totals.
- Number of males under 35: [tex]\( 345 \)[/tex]
- Number of males 35 and over: [tex]\( 380 \)[/tex]
- Number of females under 35: [tex]\( 362 \)[/tex]
- Number of females 35 and over: [tex]\( 472 \)[/tex]

#### a) Total Population
First, let's find the total population:
[tex]\[ \text{Total population} = 345 + 380 + 362 + 472 = 1559 \][/tex]

#### b) Total Number of Males
Next, we find the total number of males:
[tex]\[ \text{Total males} = 345 + 380 = 725 \][/tex]

### i) Calculate [tex]\( P(M) \)[/tex]

The probability that a randomly chosen person is male, [tex]\( P(M) \)[/tex], is given by the ratio of the total number of males to the total population:
[tex]\[ P(M) = \frac{\text{Total males}}{\text{Total population}} = \frac{725}{1559} \approx 0.465 \][/tex]

### ii) Calculate [tex]\( P(M \text{ and } Y) \)[/tex]

The probability that a randomly chosen person is both male and under 35, [tex]\( P(M \text{ and } Y) \)[/tex], is given by the ratio of the number of males under 35 to the total population:
[tex]\[ P(M \text{ and } Y) = \frac{\text{Number of males under 35}}{\text{Total population}} = \frac{345}{1559} \approx 0.221 \][/tex]

### iii) Check for Independence

Events [tex]\( M \)[/tex] and [tex]\( Y \)[/tex] are independent if [tex]\( P(M \text{ and } Y) = P(M) \cdot P(Y) \)[/tex].

First, let's calculate [tex]\( P(Y) \)[/tex], the probability that a randomly chosen person is under 35:
[tex]\[ \text{Total under 35} = 345 + 362 = 707 \][/tex]
[tex]\[ P(Y) = \frac{\text{Total under 35}}{\text{Total population}} = \frac{707}{1559} \approx 0.454 \][/tex]

We have:
- [tex]\( P(M) \approx 0.465 \)[/tex]
- [tex]\( P(Y) \approx 0.454 \)[/tex]
- [tex]\( P(M \text{ and } Y) \approx 0.221 \)[/tex]

Now compute [tex]\( P(M) \cdot P(Y) \)[/tex]:
[tex]\[ P(M) \cdot P(Y) = 0.465 \times 0.454 \approx 0.211 \][/tex]

Since [tex]\( P(M \text{ and } Y) \neq P(M) \cdot P(Y) \)[/tex]:
[tex]\[ 0.221 \neq 0.211 \][/tex]

The events [tex]\( M \)[/tex] and [tex]\( Y \)[/tex] are not independent. This means that the occurrence of one event affects the probability of the occurrence of the other.

### Summary of Answers:
i) [tex]\( P(M) \approx 0.465 \)[/tex]

ii) [tex]\( P(M \text{ and } Y) \approx 0.221 \)[/tex]

iii) The events [tex]\( M \)[/tex] and [tex]\( Y \)[/tex] are not independent because [tex]\( P(M \text{ and } Y) \neq P(M) \cdot P(Y) \)[/tex].