Question 58

What will come in the place of the question mark '?' in the following question?

[tex]\[
\sqrt{11^3 - 31 + 12^2} \div \sqrt{6^2 \times 10 + 5^2 - 2^3 \times 3} = ?
\][/tex]

1. 1
2. 6
3. 4
4. 8
5. 2



Answer :

To find the value that comes in place of the question mark in the given equation, we need to follow a series of steps to evaluate each part of the expression. Let's go through them one by one.

The given equation is:
[tex]\[ \frac{\sqrt{11^3 - 31 + 12^2}}{\sqrt{6^2 \times 10 + 5^2 - 2^3 \times 3}} = ? \][/tex]

### Step 1: Calculate [tex]\(11^3 - 31 + 12^2\)[/tex]

First, we find [tex]\(11^3\)[/tex]:
[tex]\[ 11^3 = 11 \times 11 \times 11 = 1331 \][/tex]

Next, calculate [tex]\(12^2\)[/tex]:
[tex]\[ 12^2 = 12 \times 12 = 144 \][/tex]

Now, substitute these values into the expression and simplify:
[tex]\[ 11^3 - 31 + 12^2 = 1331 - 31 + 144 = 1331 - 31 = 1300, \quad 1300 + 144 = 1444 \][/tex]

Next, take the square root of 1444:
[tex]\[ \sqrt{1444} = 38 \][/tex]

### Step 2: Calculate [tex]\(6^2 \times 10 + 5^2 - 2^3 \times 3\)[/tex]

First, we find [tex]\(6^2\)[/tex]:
[tex]\[ 6^2 = 6 \times 6 = 36 \][/tex]

Then, multiply by [tex]\(10\)[/tex]:
[tex]\[ 36 \times 10 = 360 \][/tex]

Next, calculate [tex]\(5^2\)[/tex]:
[tex]\[ 5^2 = 25 \][/tex]

Then, calculate [tex]\(2^3\)[/tex]:
[tex]\[ 2^3 = 2 \times 2 \times 2 = 8 \][/tex]

Now multiply by [tex]\(3\)[/tex]:
[tex]\[ 8 \times 3 = 24 \][/tex]

Substitute these values into the expression and simplify:
[tex]\[ 6^2 \times 10 + 5^2 - 2^3 \times 3 = 360 + 25 - 24 = 360 + 1 = 361 \][/tex]

Next, take the square root of 361:
[tex]\[ \sqrt{361} = 19 \][/tex]

### Step 3: Divide the two results

Finally, divide the results from Step 1 and Step 2:
[tex]\[ \frac{\sqrt{11^3 - 31 + 12^2}}{\sqrt{6^2 \times 10 + 5^2 - 2^3 \times 3}} = \frac{38}{19} = 2 \][/tex]

Thus, the value that comes in the place of the question mark '?' is [tex]\( \boxed{2} \)[/tex].