Sure, let's fill in the schedule step-by-step.
1. Calculate [tex]\( A \)[/tex]:
- For [tex]\( A \)[/tex], we need the number of bagels made after 1 hour.
- Raj can make 30 bagels in an hour.
- Hence, [tex]\( A = 30 \)[/tex].
2. Calculate [tex]\( B \)[/tex]:
- For [tex]\( B \)[/tex], we need the number of doughnuts made after 3 hours, with unit hours spent on bagels.
- If Raj spends all 3 hours on making doughnuts, he would have made [tex]\( 60 \times 3 = 180 \)[/tex] doughnuts.
- [tex]\( B = 180 - 180 = 0 \)[/tex]
3. Calculate [tex]\( C \)[/tex]:
- For [tex]\( C \)[/tex], we need the number of bagels made after 3 hours.
- Raj can make 30 bagels in an hour.
- Hence, in 3 hours, Raj makes [tex]\( 30 \times 3 = 90 \)[/tex] bagels.
- So, [tex]\( C = 90 \)[/tex].
Therefore, the completed schedule should look like this:
[tex]\[
\begin{array}{|c|c|c|}
\hline
\begin{array}{c}
\text{Hours} \\
\text{spent on} \\
\text{bagels}
\end{array}
&
\begin{array}{c}
\text{Number of} \\
\text{doughnuts} \\
\text{made}
\end{array}
&
\begin{array}{c}
\text{Number of} \\
\text{bagels} \\
\text{made}
\end{array} \\
\hline
0 & 300 & 0 \\
\hline
1 & 240 & 30 \\
\hline
3 & 0 & 90 \\
\hline
\end{array}
\][/tex]