Answered

Schedule for Raj's Bakery

[tex]\[
\begin{tabular}{|c|c|c|}
\hline
\begin{tabular}{c}
Hours \\
spent on \\
bagels
\end{tabular} & \begin{tabular}{c}
Number of \\
doughnuts \\
made
\end{tabular} & \begin{tabular}{c}
Number of \\
bagels \\
made
\end{tabular} \\
\hline
0 & 300 & 0 \\
\hline
1 & 240 & (A) \\
\hline
3 & (B) & (C) \\
\hline
\end{tabular}
\][/tex]

Raj wants to expand his bakery business to include bagels. In one hour of work, Raj can make 60 doughnuts or 30 bagels.

Use the drop-down menu to complete the production possibility schedule.

A) [tex]$\square$[/tex]

B) [tex]$\square$[/tex]

C) [tex]$\square$[/tex]



Answer :

Sure, let's fill in the schedule step-by-step.

1. Calculate [tex]\( A \)[/tex]:
- For [tex]\( A \)[/tex], we need the number of bagels made after 1 hour.
- Raj can make 30 bagels in an hour.
- Hence, [tex]\( A = 30 \)[/tex].

2. Calculate [tex]\( B \)[/tex]:
- For [tex]\( B \)[/tex], we need the number of doughnuts made after 3 hours, with unit hours spent on bagels.
- If Raj spends all 3 hours on making doughnuts, he would have made [tex]\( 60 \times 3 = 180 \)[/tex] doughnuts.
- [tex]\( B = 180 - 180 = 0 \)[/tex]

3. Calculate [tex]\( C \)[/tex]:
- For [tex]\( C \)[/tex], we need the number of bagels made after 3 hours.
- Raj can make 30 bagels in an hour.
- Hence, in 3 hours, Raj makes [tex]\( 30 \times 3 = 90 \)[/tex] bagels.
- So, [tex]\( C = 90 \)[/tex].

Therefore, the completed schedule should look like this:

[tex]\[ \begin{array}{|c|c|c|} \hline \begin{array}{c} \text{Hours} \\ \text{spent on} \\ \text{bagels} \end{array} & \begin{array}{c} \text{Number of} \\ \text{doughnuts} \\ \text{made} \end{array} & \begin{array}{c} \text{Number of} \\ \text{bagels} \\ \text{made} \end{array} \\ \hline 0 & 300 & 0 \\ \hline 1 & 240 & 30 \\ \hline 3 & 0 & 90 \\ \hline \end{array} \][/tex]