Answer :
Certainly! Let's solve each equation step by step and match it with the correct solution.
1. [tex]\( n - 13 = -12 \)[/tex]
To find the value of [tex]\( n \)[/tex], we need to isolate [tex]\( n \)[/tex] on one side:
[tex]\[ n - 13 + 13 = -12 + 13 \][/tex]
[tex]\[ n = 1 \][/tex]
2. [tex]\( \frac{n}{5} = -\frac{1}{5} \)[/tex]
To find the value of [tex]\( n \)[/tex], we can multiply both sides by 5:
[tex]\[ \frac{n}{5} \times 5 = -\frac{1}{5} \times 5 \][/tex]
[tex]\[ n = -1 \][/tex]
3. [tex]\( n + 15 = -10 \)[/tex]
To find the value of [tex]\( n \)[/tex], we need to isolate [tex]\( n \)[/tex] on one side:
[tex]\[ n + 15 - 15 = -10 - 15 \][/tex]
[tex]\[ n = -25 \][/tex]
4. [tex]\( -5n = 1 \)[/tex]
To find the value of [tex]\( n \)[/tex], we need to isolate [tex]\( n \)[/tex] by dividing both sides by -5:
[tex]\[ n = \frac{1}{-5} \][/tex]
[tex]\[ n = -0.2 \][/tex]
Now, we can match each equation with its solution:
1. [tex]\( n - 13 = -12 \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( n = 1 \)[/tex]
2. [tex]\( \frac{n}{5} = -\frac{1}{5} \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( n = -1 \)[/tex]
3. [tex]\( n + 15 = -10 \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( n = -25 \)[/tex]
4. [tex]\( -5n = 1 \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( n = -0.2 \)[/tex]
So, the matched equations and solutions are:
- [tex]\( n - 13 = -12 \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( 1 \)[/tex]
- [tex]\( \frac{n}{5} = -\frac{1}{5} \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( -1 \)[/tex]
- [tex]\( n + 15 = -10 \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( -25 \)[/tex]
- [tex]\( -5n = 1 \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( -0.2 \)[/tex]
1. [tex]\( n - 13 = -12 \)[/tex]
To find the value of [tex]\( n \)[/tex], we need to isolate [tex]\( n \)[/tex] on one side:
[tex]\[ n - 13 + 13 = -12 + 13 \][/tex]
[tex]\[ n = 1 \][/tex]
2. [tex]\( \frac{n}{5} = -\frac{1}{5} \)[/tex]
To find the value of [tex]\( n \)[/tex], we can multiply both sides by 5:
[tex]\[ \frac{n}{5} \times 5 = -\frac{1}{5} \times 5 \][/tex]
[tex]\[ n = -1 \][/tex]
3. [tex]\( n + 15 = -10 \)[/tex]
To find the value of [tex]\( n \)[/tex], we need to isolate [tex]\( n \)[/tex] on one side:
[tex]\[ n + 15 - 15 = -10 - 15 \][/tex]
[tex]\[ n = -25 \][/tex]
4. [tex]\( -5n = 1 \)[/tex]
To find the value of [tex]\( n \)[/tex], we need to isolate [tex]\( n \)[/tex] by dividing both sides by -5:
[tex]\[ n = \frac{1}{-5} \][/tex]
[tex]\[ n = -0.2 \][/tex]
Now, we can match each equation with its solution:
1. [tex]\( n - 13 = -12 \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( n = 1 \)[/tex]
2. [tex]\( \frac{n}{5} = -\frac{1}{5} \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( n = -1 \)[/tex]
3. [tex]\( n + 15 = -10 \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( n = -25 \)[/tex]
4. [tex]\( -5n = 1 \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( n = -0.2 \)[/tex]
So, the matched equations and solutions are:
- [tex]\( n - 13 = -12 \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( 1 \)[/tex]
- [tex]\( \frac{n}{5} = -\frac{1}{5} \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( -1 \)[/tex]
- [tex]\( n + 15 = -10 \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( -25 \)[/tex]
- [tex]\( -5n = 1 \)[/tex] [tex]$\rightarrow$[/tex] [tex]\( -0.2 \)[/tex]