Simplify the expression:

[tex]\[ \left(9 - 4a^3b^3\right) - \left(-6a^3b^3 - 14 - a\right) - \left(-6a^3b^3 + 2a\right) \][/tex]



Answer :

Sure, let's break this problem down step by step to simplify the given expression:

The expression to simplify is:
[tex]\[ (9 - 4a^3b^3) - (-6a^3b^3 - 14 - a) - (-6a^3b^3 + 2a) \][/tex]

### Step 1: Distribute the negative signs through the parentheses

First, distribute the negative signs to remove the parentheses:
[tex]\[ = 9 - 4a^3b^3 + 6a^3b^3 + 14 + a + 6a^3b^3 - 2a \][/tex]

### Step 2: Combine like terms

Now, combine the like terms. Let's consider the terms involving [tex]\(a^3b^3\)[/tex], the constant terms, and the terms involving [tex]\(a\)[/tex]:

1. Combine the [tex]\(a^3b^3\)[/tex] terms:
[tex]\[ -4a^3b^3 + 6a^3b^3 + 6a^3b^3 = (6a^3b^3 + 6a^3b^3 - 4a^3b^3) = 8a^3b^3 \][/tex]

2. Combine the constant terms:
[tex]\[ 9 + 14 = 23 \][/tex]

3. Combine the terms involving [tex]\(a\)[/tex]:
[tex]\[ a - 2a = -a \][/tex]

### Step 3: Write the simplified expression

Putting all these simplified terms together, we get:
[tex]\[ 8a^3b^3 - a + 23 \][/tex]

Thus, the simplified form of the given expression is:
[tex]\[ 8a^3b^3 - a + 23 \][/tex]