Answer :
To solve for [tex]\( x \)[/tex] in the equation
[tex]\[ \frac{7x + 14}{3} - \frac{17 - 3x}{5} = 6x - \frac{4x + 2}{3} - 5, \][/tex]
let us go through the solution step-by-step:
### Step 1: Simplify Both Sides Separately
Rewrite the equation for clarity:
[tex]\[ \frac{7x + 14}{3} - \frac{17 - 3x}{5} = 6x - \frac{4x + 2}{3} - 5. \][/tex]
First, we combine the fractions on both sides:
### Step 2: Combine Like Terms on Each Side
For the left side:
[tex]\[ \frac{7x + 14}{3} - \frac{17 - 3x}{5} \][/tex]
Get a common denominator for the fractions:
[tex]\[ \frac{5(7x + 14) - 3(17 - 3x)}{15} \][/tex]
[tex]\[ = \frac{35x + 70 - 51 + 9x}{15} \][/tex]
Combine like terms:
[tex]\[ = \frac{44x + 19}{15} \][/tex]
For the right side:
[tex]\[ 6x - \frac{4x + 2}{3} - 5 \][/tex]
Get a common denominator for the expressions involving [tex]\( x \)[/tex]:
[tex]\[ = 6x - \frac{4x + 2}{3} - 5 \][/tex]
[tex]\[ = 6x - \frac{4x + 2}{3} - \frac{15}{3} \][/tex]
Get a common denominator:
[tex]\[ = 6x - \frac{4x + 2 + 15}{3} \][/tex]
Combine like terms:
[tex]\[ = 6x - \frac{4x + 17}{3} \][/tex]
### Step 3: Set the Simplified Expressions Equal
Now equate the simplified expressions:
[tex]\[ \frac{44x + 19}{15} = 6x - \frac{4x + 17}{3} \][/tex]
### Step 4: Eliminate Denominators
Multiply both sides by 15 to eliminate the fraction:
[tex]\[ 44x + 19 = 15 \left(6x - \frac{4x + 17}{3}\right) \][/tex]
Distribute 15 inside the parenthesis:
[tex]\[ = 15 \times 6x - 15 \times \frac{4x + 17}{3} \][/tex]
Distribute within the fraction:
[tex]\[ = 90x - 5(4x + 17) \][/tex]
Simplify within the fraction:
[tex]\[ = 90x - 20x - 85 \][/tex]
Combine like terms:
[tex]\[ = 70x - 85 \][/tex]
Therefore, the equation becomes:
[tex]\[ 44x + 19 = 70x - 85 \][/tex]
### Step 5: Solve for [tex]\( x \)[/tex]
To isolate [tex]\( x \)[/tex], first move all [tex]\( x \)[/tex]-terms to one side and constants to the other:
[tex]\[ 44x - 70x = -85 - 19 \][/tex]
Simplify:
[tex]\[ -26x = -104 \][/tex]
Divide both sides by -26:
[tex]\[ x = 4 \][/tex]
### Conclusion
The value of [tex]\( x \)[/tex] that satisfies the given equation is:
[tex]\[ \boxed{4} \][/tex]
[tex]\[ \frac{7x + 14}{3} - \frac{17 - 3x}{5} = 6x - \frac{4x + 2}{3} - 5, \][/tex]
let us go through the solution step-by-step:
### Step 1: Simplify Both Sides Separately
Rewrite the equation for clarity:
[tex]\[ \frac{7x + 14}{3} - \frac{17 - 3x}{5} = 6x - \frac{4x + 2}{3} - 5. \][/tex]
First, we combine the fractions on both sides:
### Step 2: Combine Like Terms on Each Side
For the left side:
[tex]\[ \frac{7x + 14}{3} - \frac{17 - 3x}{5} \][/tex]
Get a common denominator for the fractions:
[tex]\[ \frac{5(7x + 14) - 3(17 - 3x)}{15} \][/tex]
[tex]\[ = \frac{35x + 70 - 51 + 9x}{15} \][/tex]
Combine like terms:
[tex]\[ = \frac{44x + 19}{15} \][/tex]
For the right side:
[tex]\[ 6x - \frac{4x + 2}{3} - 5 \][/tex]
Get a common denominator for the expressions involving [tex]\( x \)[/tex]:
[tex]\[ = 6x - \frac{4x + 2}{3} - 5 \][/tex]
[tex]\[ = 6x - \frac{4x + 2}{3} - \frac{15}{3} \][/tex]
Get a common denominator:
[tex]\[ = 6x - \frac{4x + 2 + 15}{3} \][/tex]
Combine like terms:
[tex]\[ = 6x - \frac{4x + 17}{3} \][/tex]
### Step 3: Set the Simplified Expressions Equal
Now equate the simplified expressions:
[tex]\[ \frac{44x + 19}{15} = 6x - \frac{4x + 17}{3} \][/tex]
### Step 4: Eliminate Denominators
Multiply both sides by 15 to eliminate the fraction:
[tex]\[ 44x + 19 = 15 \left(6x - \frac{4x + 17}{3}\right) \][/tex]
Distribute 15 inside the parenthesis:
[tex]\[ = 15 \times 6x - 15 \times \frac{4x + 17}{3} \][/tex]
Distribute within the fraction:
[tex]\[ = 90x - 5(4x + 17) \][/tex]
Simplify within the fraction:
[tex]\[ = 90x - 20x - 85 \][/tex]
Combine like terms:
[tex]\[ = 70x - 85 \][/tex]
Therefore, the equation becomes:
[tex]\[ 44x + 19 = 70x - 85 \][/tex]
### Step 5: Solve for [tex]\( x \)[/tex]
To isolate [tex]\( x \)[/tex], first move all [tex]\( x \)[/tex]-terms to one side and constants to the other:
[tex]\[ 44x - 70x = -85 - 19 \][/tex]
Simplify:
[tex]\[ -26x = -104 \][/tex]
Divide both sides by -26:
[tex]\[ x = 4 \][/tex]
### Conclusion
The value of [tex]\( x \)[/tex] that satisfies the given equation is:
[tex]\[ \boxed{4} \][/tex]