Select the correct answer.

Which expression is equivalent to the given expression?

[tex]\[
\frac{\left(4 m^2 n\right)^2}{2 m^5 n}
\][/tex]

A. [tex]\(4 m^{-1} n\)[/tex]

B. [tex]\(8 m^{-1} n\)[/tex]

C. [tex]\(4 m^9 n^3\)[/tex]

D. [tex]\(8 m^9 n^3\)[/tex]



Answer :

To solve the given expression
[tex]\[ \frac{\left(4 m^2 n\right)^2}{2 m^5 n}, \][/tex]
we need to simplify it step by step.

### Step 1: Simplify the numerator

First, let's simplify the numerator [tex]\((4 m^2 n)^2\)[/tex].

[tex]\[ (4 m^2 n)^2 = 4^2 \cdot (m^2)^2 \cdot n^2 = 16 \cdot m^4 \cdot n^2 \][/tex]

Thus, the numerator simplifies to [tex]\( 16 m^4 n^2 \)[/tex].

### Step 2: Rewrite the expression with the simplified numerator

Now, substitute the simplified numerator back into the expression:
[tex]\[ \frac{16 m^4 n^2}{2 m^5 n} \][/tex]

### Step 3: Simplify the expression

Next, we need to divide the numerator by the denominator. Let's break it down:

[tex]\[ \frac{16 m^4 n^2}{2 m^5 n} = \frac{16}{2} \cdot \frac{m^4}{m^5} \cdot \frac{n^2}{n} \][/tex]

Simplify each part separately:

- [tex]\(\frac{16}{2} = 8\)[/tex]
- [tex]\(\frac{m^4}{m^5} = m^{4-5} = m^{-1}\)[/tex]
- [tex]\(\frac{n^2}{n} = n^{2-1} = n\)[/tex]

### Step 4: Combine the simplified components

Putting it all together:

[tex]\[ 8 \cdot m^{-1} \cdot n = 8 m^{-1} n \][/tex]

### Conclusion

The equivalent expression is [tex]\(8 m^{-1} n\)[/tex], which corresponds to option B.

So, the correct answer is:
[tex]\[ \boxed{B. \, 8 m^{-1} n} \][/tex]