Select the correct answer.

Which expression is equivalent to the given expression? [tex]$8 \sqrt{6}$[/tex]

A. [tex]$\sqrt{48}$[/tex]
B. [tex][tex]$\sqrt{96}$[/tex][/tex]
C. [tex]$\sqrt{384}$[/tex]
D. [tex]$\sqrt{576}$[/tex]



Answer :

To determine which of the given expressions is equivalent to [tex]\( 8 \sqrt{6} \)[/tex], we need to square each option and then compare it to the square of [tex]\( 8 \sqrt{6} \)[/tex].

First, let's compute the square of the given expression [tex]\( 8 \sqrt{6} \)[/tex]:

[tex]\[ (8 \sqrt{6})^2 = 8^2 \cdot (\sqrt{6})^2 = 64 \cdot 6 = 384 \][/tex]

Now, let's examine the given options by squaring each one:

- Option A: [tex]\( \sqrt{48} \)[/tex]
[tex]\[ (\sqrt{48})^2 = 48 \][/tex]

- Option B: [tex]\( \sqrt{96} \)[/tex]
[tex]\[ (\sqrt{96})^2 = 96 \][/tex]

- Option C: [tex]\( \sqrt{384} \)[/tex]
[tex]\[ (\sqrt{384})^2 = 384 \][/tex]

- Option D: [tex]\( \sqrt{576} \)[/tex]
[tex]\[ (\sqrt{576})^2 = 576 \][/tex]

We see that the value we obtained for [tex]\( (8 \sqrt{6})^2 \)[/tex], which is 384, matches with [tex]\( \sqrt{384} \)[/tex].

Hence, the correct answer is:

C. [tex]\( \sqrt{384} \)[/tex]