Type the correct answer in the box. Use numerals instead of words.

Consider this expression.
[tex]\left|m^2-7\right|+n^2[/tex]

When [tex]m=-2[/tex] and [tex]n=5[/tex], the value of the expression is [tex]\square[/tex]



Answer :

To find the value of the expression [tex]\(\left|m^2 - 7\right| + n^2\)[/tex] when [tex]\(m = -2\)[/tex] and [tex]\(n = 5\)[/tex], we need to perform the following steps:

1. Calculate [tex]\(m^2\)[/tex]:
[tex]\[ m = -2 \implies m^2 = (-2)^2 = 4 \][/tex]

2. Calculate [tex]\(n^2\)[/tex]:
[tex]\[ n = 5 \implies n^2 = 5^2 = 25 \][/tex]

3. Compute [tex]\(m^2 - 7\)[/tex]:
[tex]\[ m^2 - 7 = 4 - 7 = -3 \][/tex]

4. Take the absolute value of [tex]\((m^2 - 7)\)[/tex]:
[tex]\[ \left|m^2 - 7\right| = \left|-3\right| = 3 \][/tex]

5. Finally, add the absolute value to [tex]\(n^2\)[/tex]:
[tex]\[ \left|m^2 - 7\right| + n^2 = 3 + 25 = 28 \][/tex]

So, the value of the expression when [tex]\(m = -2\)[/tex] and [tex]\(n = 5\)[/tex] is [tex]\(\boxed{28}\)[/tex].