Type the correct answer in each box. Use numerals instead of words.

Consider this expression.
[tex] (x+5)(x-7) [/tex]

Complete the box to show the distributive property applied to this expression.

[tex] (x+5)(x-7) = x(x-7) + 5(x-7) [/tex]



Answer :

To apply the distributive property to the expression [tex]\((x+5)(x-7)\)[/tex], follow these steps:

1. Multiply each term in the first parentheses by each term in the second parentheses.
2. Combine all the resulting products.

Step-by-step process:

1. Multiply [tex]\(x\)[/tex] by [tex]\(x\)[/tex]:
[tex]\[ x \cdot x = x^2 \][/tex]

2. Multiply [tex]\(x\)[/tex] by [tex]\(-7\)[/tex]:
[tex]\[ x \cdot (-7) = -7x \][/tex]

3. Multiply [tex]\(5\)[/tex] by [tex]\(x\)[/tex]:
[tex]\[ 5 \cdot x = 5x \][/tex]

4. Multiply [tex]\(5\)[/tex] by [tex]\(-7\)[/tex]:
[tex]\[ 5 \cdot (-7) = -35 \][/tex]

Now, combine all the terms:
[tex]\[ x^2 + (-7x) + 5x + (-35) \][/tex]

Combine like terms:
[tex]\[ x^2 - 7x + 5x - 35 \][/tex]

Simplify the expression:
[tex]\[ x^2 - 2x - 35 \][/tex]

So, after applying the distributive property to the expression [tex]\((x+5)(x-7)\)[/tex], we get:
[tex]\[ x^2 - 2x - 35 \][/tex]