mikuuu
Answered

Type the correct answer in each box. Use numerals instead of words.

Multiply the expressions:

[tex]\[
\frac{3x^2 + 2x - 21}{-2x^2 - 2x + 12} \cdot \frac{2x^2 + 25x + 63}{6x^2 + 7x - 49}
\][/tex]

If [tex]\(a = 1\)[/tex], find the values of [tex]\(b\)[/tex], [tex]\(c\)[/tex], and [tex]\(d\)[/tex] that make the given expression equivalent to the expression below:

[tex]\[
\frac{ax + b}{cx + d}
\][/tex]

[tex]\(b = \square\)[/tex], [tex]\(c = \square\)[/tex], and [tex]\(d = \square\)[/tex]



Answer :

To solve the given problem, we first multiply the two rational expressions:

[tex]\[ \frac{3 x^2+2 x-21}{-2 x^2-2 x+12} \cdot \frac{2 x^2+25 x+63}{6 x^2+7 x-49} \][/tex]

Upon simplifying the product, we want to express it in the form:

[tex]\[ \frac{a x + b}{c x + d} \][/tex]

where [tex]\( a = 1 \)[/tex]. We need to find the values of [tex]\( b \)[/tex], [tex]\( c \)[/tex], and [tex]\( d \)[/tex] that satisfy this equivalence.

After performing the necessary calculations, we find that:

[tex]\[ b = 9 \][/tex]
[tex]\[ c = -2 \][/tex]
[tex]\[ d = 4 \][/tex]

Thus, the values are:

[tex]\[ b = 9, \quad c = -2, \quad d = 4 \][/tex]