mikuuu
Answered

Select the correct answer.

For which quotient is [tex]$x=7$[/tex] an excluded value?

A. [tex]\frac{x-7}{x^2+4x-21} \div \frac{x^2+49}{x+7}[/tex]
B. [tex]\frac{x^2-49}{3x+21} \div \frac{x^2+7x}{3x}[/tex]
C. [tex]\frac{x+7}{x^2+6x-7} \div \frac{7}{2x+14}[/tex]
D. [tex]\frac{7x}{x^2-10x+21} \div \frac{x+7}{7}[/tex]



Answer :

To determine for which quotient the value [tex]\( x = 7 \)[/tex] is excluded, we need to check if [tex]\( x = 7 \)[/tex] makes any denominator in the given expressions equal to zero.

### Quotient A
[tex]\[ \frac{x-7}{x^2 + 4x - 21} \div \frac{x^2 + 49}{x + 7} \][/tex]
For [tex]\( x = 7 \)[/tex]:
- The denominator of the first fraction: [tex]\( x^2 + 4x - 21 \)[/tex]
[tex]\[ 7^2 + 4 \cdot 7 - 21 = 49 + 28 - 21 = 56 \quad (\text{not zero}) \][/tex]
- The denominator of the second fraction: [tex]\( x + 7 \)[/tex]
[tex]\[ 7 + 7 = 14 \quad (\text{not zero}) \][/tex]
Conclusively, [tex]\( x = 7 \)[/tex] does not make any denominator zero in Quotient A.

### Quotient B
[tex]\[ \frac{x^2 - 49}{3x + 21} \div \frac{x^2 + 7x}{3x} \][/tex]
For [tex]\( x = 7 \)[/tex]:
- The denominator of the first fraction: [tex]\( 3x + 21 \)[/tex]
[tex]\[ 3 \cdot 7 + 21 = 21 + 21 = 42 \quad (\text{not zero}) \][/tex]
- The denominator of the second fraction: [tex]\( 3x \)[/tex]
[tex]\[ 3 \cdot 7 = 21 \quad (\text{not zero}) \][/tex]
Conclusively, [tex]\( x = 7 \)[/tex] does not make any denominator zero in Quotient B.

### Quotient C
[tex]\[ \frac{x + 7}{x^2 + 6x - 7} \div \frac{7}{2x + 14} \][/tex]
For [tex]\( x = 7 \)[/tex]:
- The denominator of the first fraction: [tex]\( x^2 + 6x - 7 \)[/tex]
[tex]\[ 7^2 + 6 \cdot 7 - 7 = 49 + 42 - 7 = 84 \quad (\text{not zero}) \][/tex]
- The denominator of the second fraction: [tex]\( 2x + 14 \)[/tex]
[tex]\[ 2 \cdot 7 + 14 = 14 + 14 = 28 \quad (\text{not zero}) \][/tex]
Conclusively, [tex]\( x = 7 \)[/tex] does not make any denominator zero in Quotient C.

### Quotient D
[tex]\[ \frac{7x}{x^2 - 10x + 21} \div \frac{x + 7}{7} \][/tex]
For [tex]\( x = 7 \)[/tex]:
- The denominator of the first fraction: [tex]\( x^2 - 10x + 21 \)[/tex]
[tex]\[ 7^2 - 10 \cdot 7 + 21 = 49 - 70 + 21 = 0 \quad (\text{zero}) \][/tex]
- The denominator of the second fraction: [tex]\( 7 \)[/tex] is a constant and does not depend on [tex]\( x \)[/tex].

Conclusively, [tex]\( x = 7 \)[/tex] makes the denominator of the first fraction zero in Quotient D.

Thus, the correct answer is:
[tex]\[ \boxed{4} \][/tex]