Find a model for this data using quadratic regression.

\begin{tabular}{|c|c|c|c|c|c|}
\hline
x & 8 & 12 & 27 & 32 & 33 \\
\hline
y & 2 & 15 & 17 & 9 & 4 \\
\hline
\end{tabular}

[tex]\[ y = [?] x^2 + \square x + \square \][/tex]

Round answers to the nearest tenth.



Answer :

To find a model for the given data using quadratic regression, we follow these steps:

1. Collect the Given Data Points:

The data points provided are:

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 8 & 12 & 27 & 32 & 33 \\ \hline y & 2 & 15 & 17 & 9 & 4 \\ \hline \end{array} \][/tex]

2. Set Up the Quadratic Regression Model:

The quadratic regression model we want to find is of the form:

[tex]\[ y = ax^2 + bx + c \][/tex]

3. Calculate the Coefficients:

The coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] for the quadratic regression model based on the given data are found using specialized mathematical techniques of fitting a quadratic curve to the data points.

4. Resulting Coefficients:

From the calculations, the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are determined as follows (rounded to the nearest tenth):

[tex]\[ a = -0.1 \][/tex]
[tex]\[ b = 5.2 \][/tex]
[tex]\[ c = -30.4 \][/tex]

5. Form the Final Quadratic Model:

Using the coefficients obtained, our quadratic regression model for the given data is:

[tex]\[ y = -0.1x^2 + 5.2x - 30.4 \][/tex]

Thus, the model that fits the given data using quadratic regression is:

[tex]\[ y = -0.1 x^2 + 5.2 x - 30.4 \][/tex]