Rectangle EFGH is translated according to the rule [tex]$T_{-5,9}(x, y)$[/tex]. If the coordinates of the pre-image of point H are [tex]$(-2, -3)$[/tex], what are the coordinates of [tex][tex]$H'$[/tex][/tex]?

A. [tex]$(7, -8)$[/tex]
B. [tex]$(-7, 6)$[/tex]
C. [tex][tex]$(3, -12)$[/tex][/tex]
D. [tex]$(2, 1)$[/tex]



Answer :

To determine the coordinates of the translated point [tex]\( H' \)[/tex] given the translation rule [tex]\( T_{-5,9}(x, y) \)[/tex] and the pre-image coordinates of point [tex]\( H \)[/tex] as [tex]\((-2, -3)\)[/tex], follow these steps:

1. Identify the pre-image coordinates: The initial coordinates of point [tex]\( H \)[/tex] are given as [tex]\((-2, -3)\)[/tex].

2. Understand the translation rule: The translation rule [tex]\( T_{-5,9} \)[/tex] means that every point [tex]\((x, y)\)[/tex] is translated by [tex]\(-5\)[/tex] units along the x-axis and [tex]\(9\)[/tex] units along the y-axis.

3. Apply the translation rule to the x-coordinate:
[tex]\[ x_{H'} = x_H + (-5) \][/tex]
Substituting the x-coordinate of point [tex]\( H \)[/tex]:
[tex]\[ x_{H'} = -2 + (-5) = -2 - 5 = -7 \][/tex]

4. Apply the translation rule to the y-coordinate:
[tex]\[ y_{H'} = y_H + 9 \][/tex]
Substituting the y-coordinate of point [tex]\( H \)[/tex]:
[tex]\[ y_{H'} = -3 + 9 = 6 \][/tex]

5. Write the new coordinates of [tex]\( H' \)[/tex]: After applying the translation rule to both coordinates, we obtain:
[tex]\[ H' = (-7, 6) \][/tex]

Therefore, the coordinates of [tex]\( H' \)[/tex] after the translation are [tex]\((-7, 6)\)[/tex].

Among the given options, the correct choice is:
[tex]\[ \boxed{(-7, 6)} \][/tex]