Suppose that the functions [tex]h[/tex] and [tex]g[/tex] are defined as follows:

[tex]\[
\begin{array}{l}
h(x)=(4+x)(-2+x) \\
g(x)=-5+x
\end{array}
\][/tex]

(a) Find [tex]\(\left(\frac{h}{g}\right)(3)\)[/tex].

(b) Find all values that are NOT in the domain of [tex]\(\frac{h}{g}\)[/tex].

If there is more than one value, separate them with commas.



Answer :

To solve this problem, let’s break it down step-by-step:

### Part (a) Find [tex]\(\left(\frac{h}{g}\right)(3)\)[/tex]

First, we need to determine the individual values of [tex]\( h(x) \)[/tex] and [tex]\( g(x) \)[/tex] at [tex]\( x = 3 \)[/tex].

#### Step 1: Calculate [tex]\( h(3) \)[/tex]

Given:
[tex]\[ h(x) = (4 + x)(-2 + x) \][/tex]

Substitute [tex]\( x = 3 \)[/tex]:
[tex]\[ h(3) = (4 + 3)(-2 + 3) \][/tex]
[tex]\[ h(3) = 7 \cdot 1 = 7 \][/tex]

#### Step 2: Calculate [tex]\( g(3) \)[/tex]

Given:
[tex]\[ g(x) = -5 + x \][/tex]

Substitute [tex]\( x = 3 \)[/tex]:
[tex]\[ g(3) = -5 + 3 = -2 \][/tex]

#### Step 3: Calculate [tex]\(\left(\frac{h}{g}\right)(3)\)[/tex]

[tex]\[ \left(\frac{h}{g}\right)(3) = \frac{h(3)}{g(3)} = \frac{7}{-2} = -\frac{7}{2} \][/tex]

Thus, the value of [tex]\(\left(\frac{h}{g}\right)(3)\)[/tex] is [tex]\(-\frac{7}{2}\)[/tex].

### Part (b) Find all values that are NOT in the domain of [tex]\(\frac{h}{g}\)[/tex]

The function [tex]\(\frac{h}{g}\)[/tex] is not defined where the denominator [tex]\( g(x) \)[/tex] is equal to zero.

#### Step 1: Set [tex]\( g(x) = 0 \)[/tex]

[tex]\[ g(x) = -5 + x = 0 \][/tex]

#### Step 2: Solve for [tex]\( x \)[/tex]

[tex]\[ x = 5 \][/tex]

Thus, the function [tex]\(\frac{h}{g}\)[/tex] is not defined at [tex]\( x = 5 \)[/tex].

### Summary

(a) [tex]\(\left(\frac{h}{g}\right)(3) = -\frac{7}{2}\)[/tex]

(b) The value that is NOT in the domain of [tex]\(\frac{h}{g}\)[/tex] is [tex]\( 5 \)[/tex].