A triangle on a coordinate plane is translated according to the rule [tex]$T_{-8,4}(x, y)$[/tex]. Which is another way to write this rule?

A. [tex]$(x, y) \rightarrow (x+4, y-8)$[/tex]
B. [tex][tex]$(x, y) \rightarrow (x-4, y-8)$[/tex][/tex]
C. [tex]$(x, y) \rightarrow (x-8, y+4)$[/tex]
D. [tex]$(x, y) \rightarrow (x+8, y-4)$[/tex]



Answer :

To understand the translation rule [tex]\( T_{-8,4}(x, y) \)[/tex], let's break it down step-by-step.

1. Translation Rules: Translating a point [tex]\((x, y)\)[/tex] by [tex]\((a, b)\)[/tex] means shifting the point by [tex]\(a\)[/tex] units horizontally and [tex]\(b\)[/tex] units vertically. The general translation rule is written as:
[tex]\[ (x, y) \rightarrow (x + a, y + b) \][/tex]

2. Given Translation: In the problem, we are given the translation rule [tex]\( T_{-8, 4}(x, y) \)[/tex]. This can be interpreted as:
- Shift the point [tex]\((x, y)\)[/tex] by [tex]\(-8\)[/tex] units horizontally.
- Shift the point [tex]\((x, y)\)[/tex] by [tex]\(4\)[/tex] units vertically.

3. Applying the Translation: Using the general form of the translation rule:
[tex]\[ (x, y) \rightarrow (x + (-8), y + 4) \][/tex]
Simplifying this, we get:
[tex]\[ (x, y) \rightarrow (x - 8, y + 4) \][/tex]

4. Another Way to Write the Rule: Therefore, the translation rule [tex]\( T_{-8, 4}(x, y) \)[/tex] can be written as:
[tex]\[ (x, y) \rightarrow (x - 8, y + 4) \][/tex]

5. Identifying the Correct Option: Among the given options, the one that matches this translation rule is:
[tex]\[ (x, y) \rightarrow (x - 8, y + 4) \][/tex]

Therefore, the correct way to write this translation rule is:
[tex]\[ (x, y) \rightarrow (x - 8, y + 4) \][/tex]

This corresponds to the third option. So, the correct answer is:
[tex]\[ (x, y) \rightarrow (x - 8, y + 4) \][/tex]