Find a model for this data using quadratic regression.

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
x & 5 & 7 & 8 & 10 & 11 & 13 & 15 \\
\hline
y & 31 & 51 & 56 & 62 & 61 & 51 & 31 \\
\hline
\end{tabular}
\][/tex]

[tex]\[ y = ax^2 + bx + c \][/tex]

Round answers to the nearest tenth.



Answer :

To find a model for the given data using quadratic regression, we'll fit a quadratic equation of the form [tex]\( y = ax^2 + bx + c \)[/tex] to the data points. The given data points are:

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline x & 5 & 7 & 8 & 10 & 11 & 13 & 15 \\ \hline y & 31 & 51 & 56 & 62 & 61 & 51 & 31 \\ \hline \end{array} \][/tex]

The goal is to determine the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]. By performing quadratic regression, we obtain the following coefficients:

[tex]\[ a = -1.2 \][/tex]
[tex]\[ b = 24.7 \][/tex]
[tex]\[ c = -61.9 \][/tex]

These coefficients have already been rounded to the nearest tenth. Therefore, the quadratic model that best fits the given data is:

[tex]\[ y = -1.2x^2 + 24.7x - 61.9 \][/tex]

Putting it all together, the final quadratic equation representing the model is:

[tex]\[ y = -1.2x^2 + 24.7x - 61.9 \][/tex]