Suppose that the functions [tex]$f$[/tex] and [tex]$g$[/tex] are defined as follows.
[tex]\[
\begin{array}{l}
f(x) = 3x^2 - 7 \\
g(x) = -2x + 5
\end{array}
\][/tex]

(a) Find [tex]\(\left(\frac{f}{g}\right)(1)\)[/tex]

(b) Find all values that are NOT in the domain of [tex]\(\frac{f}{g}\)[/tex].

If there is more than one value, separate them with commas.

(a) [tex]\(\left(\frac{f}{g}\right)(1) =\)[/tex] [tex]\(\square\)[/tex]

(b) Value(s) that are NOT in the domain of [tex]\(\frac{f}{g}\)[/tex] : [tex]\(\square\)[/tex]



Answer :

Let's solve the given problems step by step.

### Part (a): Finding [tex]\(\left(\frac{f}{g}\right)(1)\)[/tex]

First, we need to evaluate [tex]\(f(1)\)[/tex] and [tex]\(g(1)\)[/tex] and then find their quotient.

1. Evaluate [tex]\(f(1)\)[/tex]:
[tex]\(f(x) = 3x^2 - 7\)[/tex]
[tex]\[ f(1) = 3(1)^2 - 7 = 3 \cdot 1 - 7 = 3 - 7 = -4 \][/tex]

2. Evaluate [tex]\(g(1)\)[/tex]:
[tex]\(g(x) = -2x + 5\)[/tex]
[tex]\[ g(1) = -2(1) + 5 = -2 \cdot 1 + 5 = -2 + 5 = 3 \][/tex]

3. Find the quotient [tex]\(\left(\frac{f}{g}\right)(1)\)[/tex]:
[tex]\[ \left(\frac{f}{g}\right)(1) = \frac{f(1)}{g(1)} = \frac{-4}{3} = -\frac{4}{3} \][/tex]

So, [tex]\(\left(\frac{f}{g}\right)(1) = -\frac{4}{3}\)[/tex].

### Part (b): Finding the values that are NOT in the domain of [tex]\(\frac{f}{g}\)[/tex]

The function [tex]\(\frac{f}{g}\)[/tex] is undefined when [tex]\(g(x) = 0\)[/tex]. So, we need to find the value of [tex]\(x\)[/tex] for which [tex]\(g(x) = 0\)[/tex].

1. Solve [tex]\(g(x) = 0\)[/tex]:
[tex]\(g(x) = -2x + 5\)[/tex]
[tex]\[ -2x + 5 = 0 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ -2x = -5 \implies x = \frac{5}{2} \][/tex]

So, the value that is NOT in the domain of [tex]\(\frac{f}{g}\)[/tex] is [tex]\(\frac{5}{2}\)[/tex].

### Summary of Answers
(a) [tex]\(\left(\frac{f}{g}\right)(1) = -\frac{4}{3}\)[/tex]

(b) Value(s) that are NOT in the domain of [tex]\(\frac{f}{g}\)[/tex]: [tex]\(\frac{5}{2}\)[/tex]

Thus, the final answers are:
(a) [tex]\(\left(\frac{f}{g}\right)(1) = -\frac{4}{3}\)[/tex]

(b) Value(s) that are NOT in the domain of [tex]\(\frac{f}{g}\)[/tex]: [tex]\(\frac{5}{2}\)[/tex]