Solve for [tex]$x$[/tex]:

[tex]$|x + 5| \ \textless \ 2x + 16$[/tex]

A. [tex][tex]$x \ \textgreater \ -7$[/tex][/tex]
B. [tex]$x \ \textgreater \ -7, x \ \textless \ -11$[/tex]
C. [tex]$-11 \ \textless \ x \ \textless \ -7$[/tex]
D. [tex][tex]$x \ \textgreater \ -11$[/tex][/tex]



Answer :

To solve the inequality [tex]\( |x+5| < 2x + 16 \)[/tex], let's break it down into steps to find the solution:

1. Understand the Absolute Value Inequality:
The inequality involves an absolute value expression, [tex]\( |x+5| \)[/tex]. Recall that [tex]\( |a| < b \)[/tex] means [tex]\(-b < a < b\)[/tex].

2. Set Up the Inequalities:
Given [tex]\( |x+5| < 2x + 16 \)[/tex], we can split this into two separate inequalities:
[tex]\[ -(x+5) < 2x + 16 \quad \text{and} \quad x+5 < 2x + 16. \][/tex]

3. Solve Each Inequality Separately:
- For the first inequality:
[tex]\[ -(x+5) < 2x + 16 \][/tex]
Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ -x - 5 < 2x + 16 \][/tex]
Add [tex]\( x \)[/tex] to both sides:
[tex]\[ -5 < 3x + 16 \][/tex]
Subtract 16 from both sides:
[tex]\[ -21 < 3x \][/tex]
Divide by 3:
[tex]\[ -7 < x \quad \text{or} \quad x > -7. \][/tex]

- For the second inequality:
[tex]\[ x + 5 < 2x + 16 \][/tex]
Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 5 < x + 16 \][/tex]
Subtract 16 from both sides:
[tex]\[ -11 < x \quad \text{or} \quad x > -11. \][/tex]

4. Combine the Results:
Both inequalities need to be satisfied simultaneously. Therefore, we take the intersection of the solutions:
[tex]\[ x > -7 \quad \text{and} \quad x > -11. \][/tex]
The more restrictive condition is [tex]\( x > -7 \)[/tex], as it is a stronger constraint.

Hence, the solution to the inequality [tex]\( |x+5| < 2x + 16 \)[/tex] is:

[tex]\[ \boxed{x > -7} \][/tex]

So, the correct answer is (A) [tex]\( x > -7 \)[/tex].