[tex]\[
L(t) = 2.5t + 11.5
\][/tex]

Complete the following statements.
Let [tex]\(L^{-1}\)[/tex] be the inverse function of [tex]\(L\)[/tex].
Take [tex]\(x\)[/tex] to be an output of the function [tex]\(L\)[/tex].
That is, [tex]\(x = L(t)\)[/tex] and [tex]\(t = L^{-1}(x)\)[/tex].

(a) Which statement best describes [tex]\(L^{-1}(x)\)[/tex]?
A. The amount of time (in minutes) it takes to have [tex]\(x\)[/tex] liters of liquid.
B. The reciprocal of the amount of liquid (in liters) after [tex]\(x\)[/tex] minutes.
C. The amount of liquid (in liters) after [tex]\(x\)[/tex] minutes.
D. The ratio of the amount of liquid (in liters) to the number of minutes, [tex]\(x\)[/tex].

(b) [tex]\(L^{-1}(x) = \)[/tex] [tex]\(\square\)[/tex]
(c) [tex]\(L^{-1}(90) = \)[/tex] [tex]\(\square\)[/tex]



Answer :

To solve these questions, let's first consider what we know about the function [tex]\( L(t) = 2.5t + 11.5 \)[/tex].

### (a) Describing [tex]\( L^{-1}(x) \)[/tex]

Given a function [tex]\( L(t) \)[/tex], its inverse function [tex]\( L^{-1}(x) \)[/tex] essentially reverses the input-output relationship. This means that if [tex]\( L(t) \)[/tex] gives us the amount of liquid in liters after [tex]\( t \)[/tex] minutes, [tex]\( L^{-1}(x) \)[/tex] will tell us the number of minutes it took to reach [tex]\( x \)[/tex] liters of liquid.

Thus, the correct statement that best describes [tex]\( L^{-1}(x) \)[/tex] is:
- The amount of time (in minutes) it takes to have [tex]\( x \)[/tex] liters of liquid.

### (b) Finding [tex]\( L^{-1}(x) \)[/tex]

To find the inverse function [tex]\( L^{-1}(x) \)[/tex]:
1. Start with the equation of [tex]\( L(t) \)[/tex]:
[tex]\[ x = 2.5t + 11.5 \][/tex]
2. Solve for [tex]\( t \)[/tex]:
[tex]\[ x - 11.5 = 2.5t \][/tex]
[tex]\[ t = \frac{x - 11.5}{2.5} \][/tex]
Hence, the inverse function is:
[tex]\[ L^{-1}(x) = \frac{x - 11.5}{2.5} \][/tex]

### (c) Evaluating [tex]\( L^{-1}(90) \)[/tex]

Now we need to find the value of the inverse function when [tex]\( x = 90 \)[/tex]:
[tex]\[ L^{-1}(90) = \frac{90 - 11.5}{2.5} \][/tex]
By performing the calculations, we get:
[tex]\[ L^{-1}(90) = \frac{78.5}{2.5} = 31.4 \][/tex]

### Summary of Results

(a) The best statement describing [tex]\( L^{-1}(x) \)[/tex] is:
- The amount of time (in minutes) it takes to have [tex]\( x \)[/tex] liters of liquid.

(b) The inverse function [tex]\( L^{-1}(x) \)[/tex] is:
[tex]\[ L^{-1}(x) = \frac{x - 11.5}{2.5} \][/tex]

(c) Evaluating the inverse function at [tex]\( x = 90 \)[/tex]:
[tex]\[ L^{-1}(90) = 31.4 \][/tex]

Thus, the fully completed answer looks like this:

(a) The amount of time (in minutes) it takes to have [tex]\( x \)[/tex] liters of liquid.

(b) [tex]\( L^{-1}(x) = \frac{x - 11.5}{2.5} \)[/tex]

(c) [tex]\( L^{-1}(90) = 31.4 \)[/tex]