Balance the chemical equation below using the smallest possible whole number stoichiometry:

[tex]P_4(s) + NaOH(aq) + H_2O(l) \rightarrow PH_3(g) + Na_2HPO_3(aq)[/tex]



Answer :

Certainly! Let's balance the chemical equation step-by-step:

[tex]\[ P_4(s) + NaOH(aq) + H_2O(l) \rightarrow PH_3(g) + Na_2HPO_3(aq) \][/tex]

### Step 1: Balance the Phosphorus (P) atoms
In [tex]\(P_4\)[/tex], there are 4 phosphorus atoms on the left side. To balance the phosphorus atoms on both sides, we need 4 molecules of [tex]\(PH_3\)[/tex], each containing 1 phosphorus atom:

[tex]\[ P_4(s) \rightarrow 4PH_3(g) \][/tex]

### Step 2: Balance the Sodium (Na) atoms
Next, we need to balance the sodium atoms. We see that [tex]\(Na_2HPO_3\)[/tex] has 2 sodium atoms per molecule. Since we need to produce 4 molecules of [tex]\(Na_2HPO_3\)[/tex] to balance the phosphorus, we will need:

[tex]\[ 4 \times 2 = 8 \][/tex]

So, we need 8 molecules of [tex]\(NaOH\)[/tex]:

[tex]\[ NaOH(aq) \rightarrow 4Na_2HPO_3(aq) \][/tex]

### Step 3: Balance the Hydrogen (H) atoms
We now need to balance the hydrogen atoms. On the product side, we have [tex]\(4PH_3\)[/tex], each containing 3 hydrogen atoms:

[tex]\[ 4 \times 3 = 12 \text{ hydrogen atoms} \][/tex]

Adding to that, we have 8 hydrogen atoms from [tex]\(8NaOH\)[/tex]:

[tex]\[ 12 + 8 = 20 \text{ hydrogen atoms required} \][/tex]

Since each water molecule ([tex]\(H_2O\)[/tex]) contains 2 hydrogen atoms, we need:

[tex]\[ \frac{20}{2} = 10 \][/tex]

### Step 4: Balance the Oxygen (O) atoms
Finally, we balance the oxygen atoms. We have 10 molecules of [tex]\(H_2O\)[/tex], each containing one oxygen atom:

[tex]\[ 10 \text{ oxygen atoms from } H_2O \][/tex]

And 8 molecules of [tex]\(NaOH\)[/tex], each containing one oxygen atom:

[tex]\[ 8 \text{ oxygen atoms from } NaOH \][/tex]

Therefore:

[tex]\[ 10 + 8 = 18 \text{ oxygen atoms on the reactant side} \][/tex]

On the product side, each [tex]\(Na_2HPO_3\)[/tex] has 3 oxygen atoms and we have 4 of them:

[tex]\[ 4 \times 3 = 12 \text{ oxygen atoms} \][/tex]

We need to distribute the rest between [tex]\(H_2O\)[/tex] molecules and fit with hydrogen atoms:

[tex]\[ 18 \text{ atoms result to 6 water molecules to fit both oxygen and hydrogen atoms required on both sides of the equation} \][/tex]

### Final Balanced Equation

Combining all these steps, the balanced equation is:

[tex]\[ P_4(s) + 8NaOH(aq) + 6H_2O(l) \rightarrow 4PH_3(g) + 4Na_2HPO_3(aq) \][/tex]

This balanced equation ensures that the number of each type of atom is the same on both sides of the equation.