\begin{tabular}{|c|c|}
\hline [tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline -8 & -16 \\
\hline -6 & -8 \\
\hline -4 & 0 \\
\hline -2 & 8 \\
\hline 0 & 16 \\
\hline 2 & 32 \\
\hline 4 & 64 \\
\hline 6 & 128 \\
\hline
\end{tabular}

Which could be the entire interval over which the function [tex]$f(x)$[/tex] is negative?

A. [tex]$(-8, -2)$[/tex]

B. [tex]$(-8, 0)$[/tex]

C. [tex]$(-\infty, -6)$[/tex]

D. [tex]$(-\infty, -4)$[/tex]



Answer :

First, let's examine the given table of values for [tex]\( f(x) \)[/tex]:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -8 & -16 \\ \hline -6 & -8 \\ \hline -4 & 0 \\ \hline -2 & 8 \\ \hline 0 & 16 \\ \hline 2 & 32 \\ \hline 4 & 64 \\ \hline 6 & 128 \\ \hline \end{array} \][/tex]

We need to determine the interval over which the function [tex]\( f(x) \)[/tex] is negative.

1. Observe the values in the second column which represent [tex]\( f(x) \)[/tex].
2. We need to identify the [tex]\( x \)[/tex]-values for which [tex]\( f(x) \)[/tex] is less than 0.

By looking at the table:
- When [tex]\( x = -8 \)[/tex], [tex]\( f(x) = -16 \)[/tex] (negative)
- When [tex]\( x = -6 \)[/tex], [tex]\( f(x) = -8 \)[/tex] (negative)
- When [tex]\( x = -4 \)[/tex], [tex]\( f(x) = 0 \)[/tex] (not negative)
- When [tex]\( x = -2 \)[/tex] and beyond (i.e., [tex]\( x = -2, 0, 2, 4, 6 \)[/tex]), [tex]\( f(x) \)[/tex] is positive.

Therefore, the function [tex]\( f(x) \)[/tex] is negative in the interval from [tex]\( x = -8 \)[/tex] to [tex]\( x = -6 \)[/tex].

Given each of the choices, the correct one must include the interval [tex]\( (-8, -6) \)[/tex]:

A) [tex]\((-8, -2)\)[/tex]: This is incorrect because [tex]\( f(x) \)[/tex] is positive for [tex]\( x = -2 \)[/tex].

B) [tex]\((-8, 0)\)[/tex]: This is incorrect because [tex]\( f(x) \)[/tex] becomes non-negative at [tex]\( x = -4 \)[/tex] and positive at [tex]\( x = 0 \)[/tex].

C) [tex]\((-\infty, -6)\)[/tex]: This is incorrect because it suggests that [tex]\( f(x) \)[/tex] is negative from negative infinity to [tex]\( -6 \)[/tex], which isn't supported by the given data.

D) [tex]\((-\infty, -4)\)[/tex]: This is incorrect because [tex]\( f(x) \)[/tex] is not negative as [tex]\( x \)[/tex] approaches [tex]\( -4 \)[/tex].

Therefore, the correct interval where [tex]\( f(x) \)[/tex] is negative is:

[tex]\[ (-8, -6) \][/tex]