Consider the function represented by the equation [tex]$x - y = 3$[/tex].

What is the equation written in function notation, with [tex]$x$[/tex] as the independent variable?

A. [tex]$f(x) = y + 3$[/tex]
B. [tex][tex]$f(x) = -y - 3$[/tex][/tex]
C. [tex]$f(x) = -x + 3$[/tex]
D. [tex]$f(x) = x - 3$[/tex]



Answer :

To convert the given equation [tex]\( x - y = 3 \)[/tex] into function notation with [tex]\( x \)[/tex] as the independent variable, we need to solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex].

Here are the steps:

1. Start with the given equation:
[tex]\[ x - y = 3 \][/tex]

2. Isolate [tex]\( y \)[/tex] on one side of the equation:
[tex]\[ x - y = 3 \][/tex]
Subtract [tex]\( x \)[/tex] from both sides to move [tex]\( x \)[/tex] to the right-hand side:
[tex]\[ - y = -x + 3 \][/tex]

3. Multiply both sides by [tex]\(-1\)[/tex] to solve for [tex]\( y \)[/tex]:
[tex]\[ y = x - 3 \][/tex]

4. Write the equation in function notation:
[tex]\[ f(x) = x - 3 \][/tex]

Therefore, the function in notation form is:
[tex]\[ f(x) = x - 3 \][/tex]

This matches the fourth option given:
[tex]\[ f(x) = x - 3 \][/tex]

Hence, the correct answer is:
[tex]\[ \boxed{4} \][/tex]