1st Semester Diagnostic Test A

1. Solve: [tex]2(3a - 4) - 3(a + 1) = 4[/tex]

A. [tex]a = 5[/tex]
B. [tex]a = \frac{11}{3}[/tex]
C. [tex]a = 1[/tex]
D. [tex]a = \frac{7}{3}[/tex]



Answer :

To solve the equation [tex]\(2(3a - 4) - 3(a + 1) = 4\)[/tex], we'll go step-by-step:

1. Distribute the constants inside the parentheses:

For the term [tex]\(2(3a - 4)\)[/tex]:
[tex]\[ 2 \times 3a - 2 \times 4 = 6a - 8 \][/tex]

For the term [tex]\(-3(a + 1)\)[/tex]:
[tex]\[ -3 \times a - 3 \times 1 = -3a - 3 \][/tex]

So, the equation now looks like:
[tex]\[ 6a - 8 - 3a - 3 = 4 \][/tex]

2. Combine like terms:

Combine the terms involving [tex]\(a\)[/tex]:
[tex]\[ 6a - 3a = 3a \][/tex]

Combine the constant terms:
[tex]\[ -8 - 3 = -11 \][/tex]

This reduces our equation to:
[tex]\[ 3a - 11 = 4 \][/tex]

3. Isolate the variable [tex]\(a\)[/tex]:

Add 11 to both sides of the equation to move the constant term to the right side:
[tex]\[ 3a - 11 + 11 = 4 + 11 \][/tex]
Simplify:
[tex]\[ 3a = 15 \][/tex]

4. Solve for [tex]\(a\)[/tex]:

Divide both sides by 3 to isolate [tex]\(a\)[/tex]:
[tex]\[ a = \frac{15}{3} \][/tex]
Simplify:
[tex]\[ a = 5 \][/tex]

Therefore, the solution to the equation [tex]\(2(3a - 4) - 3(a + 1) = 4\)[/tex] is [tex]\(a = 5\)[/tex].

Among the given options, the correct answer is:
a. [tex]\(a = 5\)[/tex]