Solve for [tex]$x$[/tex].

[tex]\[ -\frac{5}{2x-12} + 1 = \frac{8}{x-6} \][/tex]

If there is more than one solution, separate them with commas. If there is no solution, click on "No solution".

[tex]\[ x = \boxed{} \][/tex]

[tex]\[ \text{No solution} \][/tex]



Answer :

To solve the equation:
[tex]\[ -\frac{5}{2x - 12} + 1 = \frac{8}{x - 6} \][/tex]

Let's go through the steps logically:

1. Set up the equation:

Given the equation,
[tex]\[ -\frac{5}{2x - 12} + 1 = \frac{8}{x - 6} \][/tex]

2. Isolate the fractions:

Move [tex]\(1\)[/tex] to the right side by subtracting [tex]\(1\)[/tex] from both sides:
[tex]\[ -\frac{5}{2x - 12} = \frac{8}{x - 6} - 1 \][/tex]

3. Common denominator:

To combine the terms on the right side, they need a common denominator. Thus:
[tex]\[ \frac{8}{x - 6} - 1 = \frac{8}{x - 6} - \frac{x - 6}{x - 6} = \frac{8 - (x - 6)}{x - 6} = \frac{8 - x + 6}{x - 6} = \frac{14 - x}{x - 6} \][/tex]

Therefore, we have:
[tex]\[ -\frac{5}{2x - 12} = \frac{14 - x}{x - 6} \][/tex]

4. Observe the form of the denominators:

Notice that [tex]\(2x - 12 = 2(x - 6)\)[/tex].

Simplify by expressing [tex]\(2x - 12\)[/tex] as [tex]\(2(x - 6)\)[/tex]:
[tex]\[ -\frac{5}{2(x - 6)} = \frac{14 - x}{x - 6} \][/tex]

5. Multiplying both sides by a common factor:

Multiply both sides by [tex]\(2(x - 6)\)[/tex] to clear the denominators:
[tex]\[ -5 = (14 - x) \cdot 2 \][/tex]

Simplifying inside the parentheses:
[tex]\[ -5 = 28 - 2x \][/tex]

6. Solving for [tex]\(x\)[/tex]:

Add [tex]\(2x\)[/tex] to both sides:
[tex]\[ 2x - 5 = 28 \][/tex]

Add [tex]\(5\)[/tex] to both sides:
[tex]\[ 2x = 33 \][/tex]

Divide both sides by [tex]\(2\)[/tex]:
[tex]\[ x = \frac{33}{2} \][/tex]

Therefore, the solution to the equation is:
[tex]\[ x = \frac{33}{2} \][/tex]