To find the rate of change of the function [tex]\( g(x) = 1.25 + 2x \)[/tex], we need to identify the coefficient of [tex]\( x \)[/tex] in the given function.
The general form of a linear function is [tex]\( g(x) = mx + b \)[/tex], where:
- [tex]\( m \)[/tex] represents the rate of change (or slope) of the function.
- [tex]\( b \)[/tex] represents the y-intercept, which is the value of the function when [tex]\( x = 0 \)[/tex].
For the function [tex]\( g(x) = 1.25 + 2x \)[/tex]:
- The coefficient [tex]\( m \)[/tex] of [tex]\( x \)[/tex] is [tex]\( 2 \)[/tex].
Thus, the rate of change of the function [tex]\( g(x) \)[/tex] is [tex]\( 2 \)[/tex].
Therefore, the rate of change of the function [tex]\( g \)[/tex] is [tex]\( 2 \)[/tex].