Which expression is equivalent to the one below?

[tex]\[ \left(\frac{r^{-5}}{r^{-9}}\right)^{1/2} \][/tex]

A. [tex]\[ r^{-14} \][/tex]

B. [tex]\[ r^{14} \][/tex]

C. [tex]\[ r^2 \][/tex]



Answer :

To determine which expression is equivalent to the given expression [tex]\(\left(\frac{r^{-5}}{r^{-9}}\right)^{1 / 2}\)[/tex], let's go through the steps of simplifying it:

1. Step 1: Apply the division property of exponents

[tex]\[ \frac{r^{-5}}{r^{-9}} = r^{-5 - (-9)} = r^{-5 + 9} = r^4 \][/tex]

2. Step 2: Simplify the exponents within the parentheses

This simplifies our original expression to:

[tex]\[ \left(r^4\right)^{1 / 2} \][/tex]

3. Step 3: Apply the power of a power property of exponents

When an exponent is raised to another exponent, we multiply the exponents:

[tex]\[ \left(r^4\right)^{1 / 2} = r^{4 \cdot \frac{1}{2}} = r^{4 / 2} = r^2 \][/tex]

Thus, the expression [tex]\(\left(\frac{r^{-5}}{r^{-9}}\right)^{1 / 2}\)[/tex] simplifies to [tex]\(r^2\)[/tex].

Therefore, the correct answer is:

C) [tex]\(r^2\)[/tex]