Answer :

Of course, let's solve the given system of simultaneous equations step-by-step:

Given the system of equations:
[tex]\[ \begin{cases} 1. & x + y = 7 \\ 2. & 2x + 3y = 4 \end{cases} \][/tex]

1. Solve the first equation for [tex]\( y \)[/tex]:
[tex]\[ x + y = 7 \implies y = 7 - x \][/tex]

2. Substitute [tex]\( y = 7 - x \)[/tex] into the second equation:
[tex]\[ 2x + 3(7 - x) = 4 \][/tex]

3. Expand and simplify the second equation:
[tex]\[ 2x + 21 - 3x = 4 \][/tex]
[tex]\[ 2x - 3x + 21 = 4 \][/tex]
[tex]\[ -x + 21 = 4 \][/tex]

4. Rearrange to solve for [tex]\( x \)[/tex]:
[tex]\[ -x + 21 = 4 \implies -x = 4 - 21 \implies -x = -17 \implies x = 17 \][/tex]

5. Substitute [tex]\( x = 17 \)[/tex] back into the equation [tex]\( y = 7 - x \)[/tex] to find [tex]\( y \)[/tex]:
[tex]\[ y = 7 - 17 \][/tex]
[tex]\[ y = -10 \][/tex]

Thus, the solution to the system of equations is:
[tex]\[ x = 17 \quad \text{and} \quad y = -10 \][/tex]

So, the values are [tex]\( x = 17 \)[/tex] and [tex]\( y = -10 \)[/tex].