Worksheet-02-B

Capacitor, Capacitance of a Capacitor and Its Unit, Energy Stored in a Capacitor, Charging and Discharging a Capacitor, Polarization of Dielectric of a Capacitor

What voltage is required to store [tex]$7.2 \times 10^{-5} C$[/tex] of charge on the plates of a [tex]$6.0 \mu F$[/tex] capacitor?

A) 12 V
B) 43.2 V
C) 1.2 V
D) 432 V



Answer :

To determine the voltage required to store a given charge on a capacitor, we use the relationship between charge (Q), capacitance (C), and voltage (V), which is given by:

[tex]\[ V = \frac{Q}{C} \][/tex]

Where:
- [tex]\( Q \)[/tex] is the charge in coulombs (C)
- [tex]\( C \)[/tex] is the capacitance in farads (F)
- [tex]\( V \)[/tex] is the voltage in volts (V)

Given:
- [tex]\( Q = 7.2 \times 10^{-5} \)[/tex] coulombs
- [tex]\( C = 6.0 \)[/tex] microfarads ([tex]\( \mu F \)[/tex])

First, we need to convert the capacitance from microfarads to farads since the standard unit for capacitance is farads. We know that [tex]\( 1 \mu F = 10^{-6} F \)[/tex], hence:

[tex]\[ C = 6.0 \mu F = 6.0 \times 10^{-6} \text{ F} \][/tex]

Now, substituting the given values into the formula:

[tex]\[ V = \frac{7.2 \times 10^{-5}}{6.0 \times 10^{-6}} \][/tex]

By performing the division:

[tex]\[ V = \frac{7.2 \times 10^{-5}}{6.0 \times 10^{-6}} = \frac{7.2}{6.0} \times \frac{10^{-5}}{10^{-6}} \][/tex]

[tex]\[ V = 1.2 \times 10^1 \][/tex]

[tex]\[ V = 12 \text{ V} \][/tex]

Therefore, the voltage required to store [tex]\(7.2 \times 10^{-5} \text{ C}\)[/tex] of charge on the plates of a [tex]\( 6.0 \mu F \)[/tex] capacitor is [tex]\( 12 \text{ V} \)[/tex].

Hence, the correct answer is:
A) 12 V