Write the expression using the fewest possible terms.

[tex]\[ (-3x - 12) + (17 + 5x) \][/tex]

A. [tex]\( 2x + (-5) \)[/tex]

B. [tex]\( 8x + (-29) \)[/tex]

C. [tex]\( 8x + 29 \)[/tex]

D. [tex]\( 2x + 5 \)[/tex]



Answer :

To solve the expression:

[tex]\[ (-3x - 12) + (17 + 5x) \][/tex]

we proceed with the following steps:

1. Combine the like terms involving [tex]\( x \)[/tex]:
- The [tex]\( x \)[/tex]-terms are: [tex]\( -3x \)[/tex] and [tex]\( 5x \)[/tex].
- Add these terms together:
[tex]\[ -3x + 5x \][/tex]

2. Combine the constant terms:
- The constant terms are: [tex]\( -12 \)[/tex] and [tex]\( 17 \)[/tex].
- Add these terms together:
[tex]\[ -12 + 17 \][/tex]

3. Perform the arithmetic:
- For the [tex]\( x \)[/tex]-terms:
[tex]\[ -3x + 5x = 2x \][/tex]

- For the constant terms:
[tex]\[ -12 + 17 = 5 \][/tex]

4. Combine the simplified terms:
- Putting it all together:
[tex]\[ 2x + 5 \][/tex]

Thus, the expression using the fewest possible terms is:

[tex]\[ 2x + 5 \][/tex]

So, the correct answer is:

[tex]\[ 2 x + 5 \][/tex]