The following materials standards have been established for a particular product:

[tex]\[
\begin{array}{ll}
\text{Standard quantity per unit of output:} & 8.3 \text{ grams} \\
\text{Standard price:} & \$ 19.15 \text{ per gram}
\end{array}
\][/tex]

The following data pertain to operations concerning the product for the last month:

[tex]\[
\begin{array}{ll}
\text{Actual materials purchased:} & 7,500 \text{ grams} \\
\text{Actual cost of materials purchased:} & \$ 141,375 \\
\text{Actual materials used in production:} & 7,100 \text{ grams} \\
\text{Actual output:} & 700 \text{ units}
\end{array}
\][/tex]

What's the materials price variance for the month?

A. \[tex]$ 7,540 U
B. \$[/tex] 24,317 U
C. \[tex]$ 7,660 U
D. \$[/tex] 2,250 F



Answer :

To determine the materials price variance for the month, we need to follow these steps:

1. Identify the given values:

- Standard quantity per unit of output: 8.3 grams
- Standard price: \[tex]$19.15 per gram - Actual materials purchased: 7.500 grams - Actual cost of materials purchased: \$[/tex]141.375
- Actual materials used in production: 7.100 grams
- Actual output: 700 units

2. Calculate the standard cost based on the actual materials purchased:

The standard cost of materials purchased is computed by multiplying the actual quantity of materials purchased by the standard price:

[tex]\[ \text{Standard Cost} = \text{Actual Materials Purchased} \times \text{Standard Price} \][/tex]

Plugging in the given values:

[tex]\[ \text{Standard Cost} = 7.500 \, \text{grams} \times 19.15 \, \text{\$ per gram} = 143.625 \, \$ \][/tex]

3. Calculate the materials price variance:

The materials price variance is the difference between the actual cost of materials purchased and the standard cost of materials purchased:

[tex]\[ \text{Materials Price Variance} = \text{Actual Cost of Materials Purchased} - \text{Standard Cost} \][/tex]

Substituting the given values:

[tex]\[ \text{Materials Price Variance} = 141.375 \, \$ - 143.625 \, \$ = -2.25 \, \$ \][/tex]

A negative variance indicates a favorable variance. In this context, it means that the company spent less on materials than what was expected based on the standard cost.

Given the result:

- The materials price variance is [tex]\(-2.25 \, \$\)[/tex].

So, the correct answer is:
[tex]\[ \boxed{D) \$ 2,250 F} \][/tex]

This indicates that the actual cost of materials was \$2.25 less than the expected cost based on the standard rate.