Answer :
To determine the order of the products based on their current profitability from most profitable to least profitable, we need to calculate the contribution margin per unit of compound W for each product. The contribution margin per unit of compound W is given by:
[tex]\[ \text{Contribution Margin per unit of Compound W} = \frac{\text{Selling Price per Unit} - \text{Variable Cost per Unit}}{\text{Compound W per Unit}} \][/tex]
We can insert the relevant data for each product and calculate the contribution margins as follows:
1. Product RP:
- Selling price per unit: \[tex]$252.42 - Variable cost per unit: \$[/tex]199.92
- Compound W per unit: 8.70 centiliters
[tex]\[ \text{Contribution Margin per unit of Compound W for RP} = \frac{252.42 - 199.92}{8.70} = 6.034 \][/tex]
2. Product LH:
- Selling price per unit: \[tex]$543.75 - Variable cost per unit: \$[/tex]426.30
- Compound W per unit: 3.60 centiliters
[tex]\[ \text{Contribution Margin per unit of Compound W for LH} = \frac{543.75 - 426.30}{3.60} = 32.625 \][/tex]
3. Product KI:
- Selling price per unit: \[tex]$222.84 - Variable cost per unit: \$[/tex]163.80
- Compound W per unit: 3.60 centiliters
[tex]\[ \text{Contribution Margin per unit of Compound W for KI} = \frac{222.84 - 163.80}{3.60} = 16.4 \][/tex]
Now that we have the contribution margins per unit of compound W for each product, we can rank the products from most profitable to least profitable:
- LH: 32.625
- KI: 16.4
- RP: 6.034
Thus, the order of products from most profitable to least profitable is LH, KI, and RP. Therefore, the correct choice is:
D) [tex]\( \text{LH, KI, RP} \)[/tex]
[tex]\[ \text{Contribution Margin per unit of Compound W} = \frac{\text{Selling Price per Unit} - \text{Variable Cost per Unit}}{\text{Compound W per Unit}} \][/tex]
We can insert the relevant data for each product and calculate the contribution margins as follows:
1. Product RP:
- Selling price per unit: \[tex]$252.42 - Variable cost per unit: \$[/tex]199.92
- Compound W per unit: 8.70 centiliters
[tex]\[ \text{Contribution Margin per unit of Compound W for RP} = \frac{252.42 - 199.92}{8.70} = 6.034 \][/tex]
2. Product LH:
- Selling price per unit: \[tex]$543.75 - Variable cost per unit: \$[/tex]426.30
- Compound W per unit: 3.60 centiliters
[tex]\[ \text{Contribution Margin per unit of Compound W for LH} = \frac{543.75 - 426.30}{3.60} = 32.625 \][/tex]
3. Product KI:
- Selling price per unit: \[tex]$222.84 - Variable cost per unit: \$[/tex]163.80
- Compound W per unit: 3.60 centiliters
[tex]\[ \text{Contribution Margin per unit of Compound W for KI} = \frac{222.84 - 163.80}{3.60} = 16.4 \][/tex]
Now that we have the contribution margins per unit of compound W for each product, we can rank the products from most profitable to least profitable:
- LH: 32.625
- KI: 16.4
- RP: 6.034
Thus, the order of products from most profitable to least profitable is LH, KI, and RP. Therefore, the correct choice is:
D) [tex]\( \text{LH, KI, RP} \)[/tex]