Solve the absolute value inequality. Write the solution in interval notation.

[tex]\[ 3|x-5|+12 \geq 15 \][/tex]

Select one:
a. [tex]\[[-4, 14]\][/tex]
b. [tex]\[[4, 6]\][/tex]
c. [tex]\[(-\infty, 4] \cup [6, \infty)\][/tex]
d. [tex]\[(-\infty, -4] \cup [14, \infty)\][/tex]



Answer :

To solve the inequality [tex]\(3|x-5|+12 \geq 15\)[/tex], let's go through the steps one by one.

1. Isolate the absolute value expression:
[tex]\[3|x - 5| + 12 \geq 15\][/tex]

2. Subtract 12 from both sides to simplify the inequality:
[tex]\[3|x - 5| \geq 3\][/tex]

3. Divide both sides by 3 to isolate the absolute value term:
[tex]\[|x - 5| \geq 1\][/tex]

4. Interpret the absolute value inequality:
The inequality [tex]\(|x - 5| \geq 1\)[/tex] means that the expression inside the absolute value term [tex]\(x - 5\)[/tex] is either greater than or equal to 1, or less than or equal to -1.

This results in two separate inequalities:
[tex]\[ x - 5 \geq 1 \quad \text{or} \quad x - 5 \leq -1 \][/tex]

5. Solve each inequality separately:
[tex]\[ x - 5 \geq 1 \][/tex]
Adding 5 to both sides, we get:
[tex]\[ x \geq 6 \][/tex]

For the second inequality:
[tex]\[ x - 5 \leq -1 \][/tex]
Adding 5 to both sides, we get:
[tex]\[ x \leq 4 \][/tex]

6. Combine the solutions:
The solution to the inequality [tex]\(|x - 5| \geq 1\)[/tex] is [tex]\(x \geq 6\)[/tex] or [tex]\(x \leq 4\)[/tex].

7. Express the solution in interval notation:
The solution can be written as:
[tex]\[ (-\infty, 4] \cup [6, \infty) \][/tex]

Thus, the correct option is:
[tex]\[ \boxed{(-\infty, 4] \cup [6, \infty)} \][/tex]