Type the correct answer in the box. Use numerals instead of words.

Consider this expression:
[tex]\[ \sqrt{a^3-7} + |b| \][/tex]

When [tex]\( a=2 \)[/tex] and [tex]\( b=-4 \)[/tex], the value of the expression is [tex]\(\square\)[/tex]



Answer :

To find the value of the expression [tex]\(\sqrt{a^3 - 7} + |b|\)[/tex] when [tex]\(a = 2\)[/tex] and [tex]\(b = -4\)[/tex], follow these steps:

1. Calculate [tex]\(a^3\)[/tex]:
[tex]\[ a^3 = 2^3 = 8 \][/tex]

2. Subtract 7 from [tex]\(a^3\)[/tex]:
[tex]\[ a^3 - 7 = 8 - 7 = 1 \][/tex]

3. Take the square root of the result:
[tex]\[ \sqrt{1} = 1 \][/tex]

4. Find the absolute value of [tex]\(b\)[/tex]:
[tex]\[ |b| = |-4| = 4 \][/tex]

5. Add the two results together:
[tex]\[ \sqrt{1} + |b| = 1 + 4 = 5 \][/tex]

Therefore, when [tex]\(a = 2\)[/tex] and [tex]\(b = -4\)[/tex], the value of the expression is [tex]\(5.0\)[/tex].