Simplify the expression:
[tex]\[ \frac{x^2-x-6}{x^2-9} \][/tex]

A. [tex]\[ \frac{-x-2}{-3} \][/tex]

B. [tex]\[ \frac{-x-6}{-9} \][/tex]

C. [tex]\[ \frac{x+2}{x+3} \][/tex]

D. [tex]\[ \frac{x-2}{x-3} \][/tex]



Answer :

To simplify the expression [tex]\(\frac{x^2 - x - 6}{x^2 - 9}\)[/tex], let's follow these steps:

1. Factor the numerator and the denominator:

First, let's factor the numerator [tex]\(x^2 - x - 6\)[/tex].

Notice that [tex]\(x^2 - x - 6\)[/tex] can be factored into:
[tex]\[ (x - 3)(x + 2) \][/tex]
because
[tex]\[ (x - 3)(x + 2) = x^2 + 2x - 3x - 6 = x^2 - x - 6 \][/tex]

Next, let's factor the denominator [tex]\(x^2 - 9\)[/tex].

Notice that [tex]\(x^2 - 9\)[/tex] is a difference of squares, and it factors into:
[tex]\[ (x - 3)(x + 3) \][/tex]
because
[tex]\[ (x - 3)(x + 3) = x^2 + 3x - 3x - 9 = x^2 - 9 \][/tex]

2. Rewrite the original expression with the factored forms:
[tex]\[ \frac{x^2 - x - 6}{x^2 - 9} = \frac{(x - 3)(x + 2)}{(x - 3)(x + 3)} \][/tex]

3. Simplify the expression by canceling common factors:

We can cancel the common factor [tex]\((x - 3)\)[/tex] from the numerator and the denominator, as long as [tex]\(x \neq 3\)[/tex]:
[tex]\[ \frac{(x - 3)(x + 2)}{(x - 3)(x + 3)} = \frac{x + 2}{x + 3} \quad \text{for} \quad x \neq 3 \][/tex]

4. State the final simplified expression:

The simplified expression is:
[tex]\[ \frac{x + 2}{x + 3} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{\frac{x+2}{x+3}} \][/tex]

So the correct option from the given choices is C.