The equation below shows the relationship between the temperature in degrees Celsius,

[tex]\[ C=\frac{5}{9}(F-32) \][/tex]

Which of the following formulas correctly solves for [tex]\( F \)[/tex]?

A. [tex]\( F = \frac{9}{5} C + 32 \)[/tex]

B. [tex]\( F = \frac{9}{5} C - 32 \)[/tex]

C. [tex]\( F = 9C + \frac{32}{5} \)[/tex]

D. [tex]\( F = 9C - \frac{32}{5} \)[/tex]



Answer :

To solve for [tex]\( F \)[/tex] from the given equation:
[tex]\[ C = \frac{5}{9}(F - 32) \][/tex]

we need to isolate [tex]\( F \)[/tex]. Let's go through the steps to do that.

1. Start with the given equation:
[tex]\[ C = \frac{5}{9}(F - 32) \][/tex]

2. Eliminate the fraction by multiplying both sides of the equation by [tex]\( \frac{9}{5} \)[/tex]:
[tex]\[ C \cdot \frac{9}{5} = (F - 32) \][/tex]
Simplifying the left side gives:
[tex]\[ \frac{9}{5}C = F - 32 \][/tex]

3. Solve for [tex]\( F \)[/tex] by adding 32 to both sides of the equation:
[tex]\[ \frac{9}{5}C + 32 = F \][/tex]

Therefore, the correct formula for [tex]\( F \)[/tex] is:
[tex]\[ F = \frac{9}{5}C + 32 \][/tex]

So, from the options given:
[tex]\[ F = \frac{9}{5}C + 32 \][/tex]

is the correct formula.