Determine the solutions of the equation:

[tex]\[ \left|\frac{2}{3} x + 2\right| - 8 = 0 \][/tex]

A. [tex]\( x = -9 \)[/tex] and [tex]\( x = 9 \)[/tex]
B. [tex]\( x = -15 \)[/tex] and [tex]\( x = 4 \)[/tex]
C. [tex]\( x = -15 \)[/tex] and [tex]\( x = 9 \)[/tex]
D. [tex]\( x = -15 \)[/tex] and [tex]\( x = 15 \)[/tex]



Answer :

To determine the solutions for the given equation:

[tex]\[ \left|\frac{2}{3} x + 2\right| - 8 = 0 \][/tex]

we'll solve it step-by-step.

1. Isolate the absolute value:

[tex]\[ \left|\frac{2}{3} x + 2\right| - 8 = 0 \][/tex]

Add 8 to both sides of the equation:

[tex]\[ \left|\frac{2}{3} x + 2\right| = 8 \][/tex]

2. Remove the absolute value definition:

The equation [tex]\(\left|A\right| = B\)[/tex] implies [tex]\( A = B \)[/tex] or [tex]\( A = -B \)[/tex]. Therefore, we have two cases:

Case 1:

[tex]\[ \frac{2}{3} x + 2 = 8 \][/tex]

Case 2:

[tex]\[ \frac{2}{3} x + 2 = -8 \][/tex]

3. Solve for [tex]\( x \)[/tex] in both cases:

Case 1:

[tex]\[ \frac{2}{3} x + 2 = 8 \][/tex]

Subtract 2 from both sides:

[tex]\[ \frac{2}{3} x = 6 \][/tex]

Multiply both sides by [tex]\(\frac{3}{2}\)[/tex]:

[tex]\[ x = 6 \cdot \frac{3}{2} \][/tex]

[tex]\[ x = 9 \][/tex]

Case 2:

[tex]\[ \frac{2}{3} x + 2 = -8 \][/tex]

Subtract 2 from both sides:

[tex]\[ \frac{2}{3} x = -10 \][/tex]

Multiply both sides by [tex]\(\frac{3}{2}\)[/tex]:

[tex]\[ x = -10 \cdot \frac{3}{2} \][/tex]

[tex]\[ x = -15 \][/tex]

Thus, the solutions to the equation [tex]\(\left|\frac{2}{3} x + 2\right| - 8 = 0\)[/tex] are [tex]\(x = 9\)[/tex] and [tex]\(x = -15\)[/tex].

Therefore, the correct answer is:

[tex]\[ \boxed{x = -15 \text{ and } x = 9} \][/tex]